Li Xinxing, Huang Wendong, Xu Xuan, Zhang Hong-Yu, Shi Qianqian
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
Front Genet. 2023 May 25;14:1202409. doi: 10.3389/fgene.2023.1202409. eCollection 2023.
Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to investigate the complex and heterogeneous tissue organization. However, it is challenging for a single model to learn an effective representation within and across spatial contexts. To solve the issue, we develop a novel ensemble model, AE-GCN (utoncoder-assisted raph onvolutional neural etwork), which combines the autoencoder (AE) and graph convolutional neural network (GCN), to identify accurate and fine-grained spatial domains. AE-GCN transfers the AE-specific representations to the corresponding GCN-specific layers and unifies these two types of deep neural networks for spatial clustering via the clustering-aware contrastive mechanism. In this way, AE-GCN accommodates the strengths of both AE and GCN for learning an effective representation. We validate the effectiveness of AE-GCN on spatial domain identification and data denoising using multiple SRT datasets generated from ST, 10x Visium, and Slide-seqV2 platforms. Particularly, in cancer datasets, AE-GCN identifies disease-related spatial domains, which reveal more heterogeneity than histological annotations, and facilitates the discovery of novel differentially expressed genes of high prognostic relevance. These results demonstrate the capacity of AE-GCN to unveil complex spatial patterns from SRT data.
空间分辨转录组学(SRT)为研究复杂且异质的组织结构提供了前所未有的机会。然而,对于单一模型而言,要在空间背景内和跨空间背景学习有效的表示是具有挑战性的。为了解决这个问题,我们开发了一种新颖的集成模型AE-GCN(自动编码器辅助图卷积神经网络),它结合了自动编码器(AE)和图卷积神经网络(GCN),以识别准确且细粒度的空间域。AE-GCN将特定于AE的表示转移到相应的特定于GCN的层,并通过聚类感知对比机制统一这两种类型的深度神经网络进行空间聚类。通过这种方式,AE-GCN融合了AE和GCN的优势来学习有效的表示。我们使用从ST、10x Visium和Slide-seqV2平台生成的多个SRT数据集,验证了AE-GCN在空间域识别和数据去噪方面的有效性。特别是在癌症数据集中,AE-GCN识别出与疾病相关的空间域,这些空间域揭示了比组织学注释更多的异质性,并有助于发现具有高预后相关性的新型差异表达基因。这些结果证明了AE-GCN从SRT数据中揭示复杂空间模式的能力。