Department of Computer Science, University of Ghana, Accra, Ghana.
Sci Rep. 2024 Feb 24;14(1):4530. doi: 10.1038/s41598-024-54990-1.
Heart Diseases have the highest mortality worldwide, necessitating precise predictive models for early risk assessment. Much existing research has focused on improving model accuracy with single datasets, often neglecting the need for comprehensive evaluation metrics and utilization of different datasets in the same domain (heart disease). This research introduces a heart disease risk prediction approach by harnessing the whale optimization algorithm (WOA) for feature selection and implementing a comprehensive evaluation framework. The study leverages five distinct datasets, including the combined dataset comprising the Cleveland, Long Beach VA, Switzerland, and Hungarian heart disease datasets. The others are the Z-AlizadehSani, Framingham, South African, and Cleveland heart datasets. The WOA-guided feature selection identifies optimal features, subsequently integrated into ten classification models. Comprehensive model evaluation reveals significant improvements across critical performance metrics, including accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve. These enhancements consistently outperform state-of-the-art methods using the same dataset, validating the effectiveness of our methodology. The comprehensive evaluation framework provides a robust assessment of the model's adaptability, underscoring the WOA's effectiveness in identifying optimal features in multiple datasets in the same domain.
心脏病是全球死亡率最高的疾病,因此需要精确的预测模型来进行早期风险评估。许多现有研究都专注于使用单一数据集来提高模型的准确性,而往往忽略了需要综合评估指标以及在同一领域(心脏病)中使用不同数据集的情况。本研究通过利用鲸鱼优化算法(WOA)进行特征选择,并实施综合评估框架,引入了一种心脏病风险预测方法。该研究利用了五个不同的数据集,包括克利夫兰、长滩 VA、瑞士和匈牙利心脏病数据集的组合数据集。其余的是 Z-AlizadehSani、弗雷明汉、南非和克利夫兰心脏病数据集。WOA 引导的特征选择确定了最优特征,随后将其集成到十个分类模型中。综合模型评估显示,在关键性能指标方面均有显著提高,包括准确性、精度、召回率、F1 得分和接收者操作特征曲线下的面积。这些改进在使用相同数据集的最新方法中表现出色,验证了我们方法的有效性。综合评估框架提供了对模型适应性的稳健评估,强调了 WOA 在同一领域的多个数据集中识别最优特征的有效性。