Department of CSE, Saveetha School of Engineering Simats, Chennai, Tamil Nadu, 602105, India. jaishri.pravin2009gmail.com.
Department of CSE, Saveetha School of Engineering Simats, Chennai, Tamil Nadu, 602105, India.
IET Syst Biol. 2020 Dec;14(6):380-390. doi: 10.1049/iet-syb.2020.0041.
Prediction of cardiovascular disease (CVD) is a critical challenge in the area of clinical data analysis. In this study, an efficient heart disease prediction is developed based on optimal feature selection. Initially, the data pre-processing process is performed using data cleaning, data transformation, missing values imputation, and data normalisation. Then the decision function-based chaotic salp swarm (DFCSS) algorithm is used to select the optimal features in the feature selection process. Then the chosen attributes are given to the improved Elman neural network (IENN) for data classification. Here, the sailfish optimisation (SFO) algorithm is used to compute the optimal weight value of IENN. The combination of DFCSS-IENN-based SFO (IESFO) algorithm effectively predicts heart disease. The proposed (DFCSS-IESFO) approach is implemented in the Python environment using two different datasets such as the University of California Irvine (UCI) Cleveland heart disease dataset and CVD dataset. The simulation results proved that the proposed scheme achieved a high-classification accuracy of 98.7% for the CVD dataset and 98% for the UCI dataset compared to other classifiers, such as support vector machine, K-nearest neighbour, Elman neural network, Gaussian Naive Bayes, logistic regression, random forest, and decision tree.
心血管疾病(CVD)的预测是临床数据分析领域的一个关键挑战。在本研究中,我们基于最优特征选择开发了一种高效的心脏病预测方法。首先,通过数据清理、数据转换、缺失值插补和数据归一化来执行数据预处理过程。然后,在特征选择过程中使用基于决策函数的混沌沙蝇群(DFCSS)算法选择最优特征。然后,将所选属性提供给改进的 Elman 神经网络(IENN)进行数据分类。在这里,使用旗鱼优化(SFO)算法来计算 IENN 的最优权重值。基于 DFCSS-IENN 的 SFO(IESFO)算法的组合可有效地预测心脏病。该方法在 Python 环境中使用加利福尼亚大学欧文分校(UCI)克利夫兰心脏病数据集和 CVD 数据集这两个不同的数据集进行了实现。仿真结果表明,与支持向量机、K-最近邻、Elman 神经网络、高斯朴素贝叶斯、逻辑回归、随机森林和决策树等其他分类器相比,所提出的方案在 CVD 数据集上实现了 98.7%的高分类精度,在 UCI 数据集上实现了 98%的高分类精度。