文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络药理学、分子对接和实验验证揭示白藜芦醇治疗糖尿病肾病的机制。

Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation.

机构信息

Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road No.277, Xi'an, 710061, Shaanxi, China.

Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region of Ningxia, Yinchuan, 750002, Ningxia, China.

出版信息

J Transl Med. 2023 Jun 12;21(1):380. doi: 10.1186/s12967-023-04233-0.


DOI:10.1186/s12967-023-04233-0
PMID:37308949
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10258995/
Abstract

BACKGROUND: Diabetic kidney disease (DKD) has been the leading cause of chronic kidney disease in developed countries. Evidence of the benefits of resveratrol (RES) for the treatment of DKD is accumulating. However, comprehensive therapeutic targets and underlying mechanisms through which RES exerts its effects against DKD are limited. METHODS: Drug targets of RES were obtained from Drugbank and SwissTargetPrediction Databases. Disease targets of DKD were obtained from DisGeNET, Genecards, and Therapeutic Target Database. Therapeutic targets for RES against DKD were identified by intersecting the drug targets and disease targets. GO functional enrichment analysis, KEGG pathway analysis, and disease association analysis were performed using the DAVID database and visualized by Cytoscape software. Molecular docking validation of the binding capacity between RES and targets was performed by UCSF Chimera software and SwissDock webserver. The high glucose (HG)-induced podocyte injury model, RT-qPCR, and western blot were used to verify the reliability of the effects of RES on target proteins. RESULTS: After the intersection of the 86 drug targets and 566 disease targets, 25 therapeutic targets for RES against DKD were obtained. And the target proteins were classified into 6 functional categories. A total of 11 cellular components terms and 27 diseases, and the top 20 enriched biological processes, molecular functions, and KEGG pathways potentially involved in the RES action against DKD were recorded. Molecular docking studies showed that RES had a strong binding affinity toward PPARA, ESR1, SLC2A1, SHBG, AR, AKR1B1, PPARG, IGF1R, RELA, PIK3CA, MMP9, AKT1, INSR, MMP2, TTR, and CYP2C9 domains. The HG-induced podocyte injury model was successfully constructed and validated by RT-qPCR and western blot. RES treatment was able to reverse the abnormal gene expression of PPARA, SHBG, AKR1B1, PPARG, IGF1R, MMP9, AKT1, and INSR. CONCLUSIONS: RES may target PPARA, SHBG, AKR1B1, PPARG, IGF1R, MMP9, AKT1, and INSR domains to act as a therapeutic agent for DKD. These findings comprehensively reveal the potential therapeutic targets for RES against DKD and provide theoretical bases for the clinical application of RES in the treatment of DKD.

摘要

背景:糖尿病肾病(DKD)已成为发达国家慢性肾脏病的主要病因。越来越多的证据表明白藜芦醇(RES)对 DKD 的治疗有益。然而,综合的治疗靶点以及 RES 发挥作用的潜在机制仍有限。

方法:从 Drugbank 和 SwissTargetPrediction 数据库中获取 RES 的药物靶点。从 DisGeNET、Genecards 和 Therapeutic Target Database 中获取 DKD 的疾病靶点。通过 intersecting 药物靶点和疾病靶点来鉴定 RES 治疗 DKD 的治疗靶点。使用 DAVID 数据库进行 GO 功能富集分析、KEGG 通路分析和疾病关联分析,并通过 Cytoscape 软件可视化。使用 UCSF Chimera 软件和 SwissDock webserver 对 RES 与靶标之间的结合能力进行分子对接验证。采用高糖(HG)诱导的足细胞损伤模型、RT-qPCR 和 Western blot 验证 RES 对靶蛋白作用的可靠性。

结果:在 86 个药物靶点和 566 个疾病靶点的交集后,获得了 25 个 RES 治疗 DKD 的治疗靶点。并且将靶蛋白分为 6 个功能类别。共记录了 11 个细胞成分术语和 27 种疾病,以及 20 个最富集的生物过程、分子功能和 KEGG 通路,这些通路可能涉及 RES 对 DKD 的作用。分子对接研究表明 RES 对白藜芦醇受体(PPARA)、雌激素受体 1(ESR1)、溶质载体家族 2 成员 1(SLC2A1)、性激素结合球蛋白(SHBG)、雄激素受体(AR)、醛酮还原酶 1B1(AKR1B1)、过氧化物酶体增殖物激活受体 γ(PPARG)、胰岛素样生长因子 1 受体(IGF1R)、核因子 κB 亚基 p65(RELA)、磷酸肌醇 3 激酶催化亚基(PIK3CA)、基质金属蛋白酶 9(MMP9)、蛋白激酶 B(AKT1)、胰岛素受体(INSR)、转甲状腺素蛋白(TTR)和细胞色素 P450 2C9 结构域具有很强的结合亲和力。成功构建并验证了 HG 诱导的足细胞损伤模型,通过 RT-qPCR 和 Western blot 验证。RES 治疗能够逆转 PPARA、SHBG、AKR1B1、PPARG、IGF1R、MMP9、AKT1 和 INSR 的异常基因表达。

结论:RES 可能通过靶向 PPARA、SHBG、AKR1B1、PPARG、IGF1R、MMP9、AKT1 和 INSR 结构域来作为 DKD 的治疗药物。这些发现全面揭示了 RES 治疗 DKD 的潜在治疗靶点,并为 RES 在 DKD 治疗中的临床应用提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/cfec95f23125/12967_2023_4233_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/737a325ee1ee/12967_2023_4233_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/55bef6ad0d03/12967_2023_4233_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/ed135377c722/12967_2023_4233_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/1152c1b54e0f/12967_2023_4233_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/8ec86b949a1a/12967_2023_4233_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/7d2fe623cced/12967_2023_4233_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/cfec95f23125/12967_2023_4233_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/737a325ee1ee/12967_2023_4233_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/55bef6ad0d03/12967_2023_4233_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/ed135377c722/12967_2023_4233_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/1152c1b54e0f/12967_2023_4233_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/8ec86b949a1a/12967_2023_4233_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/7d2fe623cced/12967_2023_4233_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eed4/10258995/cfec95f23125/12967_2023_4233_Fig7_HTML.jpg

相似文献

[1]
Uncovering the mechanism of resveratrol in the treatment of diabetic kidney disease based on network pharmacology, molecular docking, and experimental validation.

J Transl Med. 2023-6-12

[2]
[Mechanism of Zicui Decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking].

Zhongguo Zhong Yao Za Zhi. 2022-6

[3]
Mechanism of Huaiqihuang in treatment of diabetic kidney disease based on network pharmacology, molecular docking and in vitro experiment.

Medicine (Baltimore). 2023-12-15

[4]
[Network pharmacology-based study of the therapeutic mechanism of resveratrol for Alzheimer's disease].

Nan Fang Yi Ke Da Xue Xue Bao. 2021-1-30

[5]
Mechanism of decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking.

Front Pharmacol. 2022-10-28

[6]
Anti-inflammatory effects of resveratrol in treating interstitial cystitis/bladder pain syndrome: a multi-faceted approach integrating network pharmacology, molecular docking, and experimental validation.

Mol Divers. 2025-6

[7]
Integrated Network Pharmacology Analysis and Experimental Validation to Elucidate the Mechanism of Acteoside in Treating Diabetic Kidney Disease.

Drug Des Devel Ther. 2024

[8]
Network pharmacology and molecular dynamics study of the effect of the drug pair on diabetic kidney disease.

World J Diabetes. 2024-7-15

[9]
Exploring the mechanism of hirudin in the treatment of diabetic kidney disease using network pharmacology combined with molecular docking verification.

J Tradit Chin Med. 2022-8

[10]
Resveratrol activates MAPK/ERK pathway to regulate oestrogen metabolism in type I endometrial cancer.

BMC Complement Med Ther. 2024-6-11

引用本文的文献

[1]
The Extract of (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota.

Curr Issues Mol Biol. 2025-8-4

[2]
Network toxicology reveals glyphosate mechanisms in kidney injury and cancer​​.

Sci Rep. 2025-8-24

[3]
Exploring the molecular mechanism of budesonide enteric capsules in the treatment of IgA nephropathy based on bioinformatics.

Sci Rep. 2025-8-21

[4]
Microglial metabolic reprogramming: Aucubin inhibits aldose reductase to reverse diabetic neuropathic pain.

World J Diabetes. 2025-8-15

[5]
Sodium formate-induced mitochondrial impairment and cytotoxicity in neuronal cells reveal crucial pathogenic mechanisms underlying diabetic neuropathy and retinopathy.

Sci Rep. 2025-7-30

[6]
Combined Metabolomics and Network Pharmacology to Reveal Anti-Diabetic Mechanisms and Potential Pharmacological Components of .

Plants (Basel). 2025-7-10

[7]
Synthesis of 5-Fluorouracil (5-FU) coated platinum nanoparticles and apoptotic effects on U87 human glioblastoma cells.

Cancer Cell Int. 2025-7-25

[8]
Anthraquinones from Ameliorate Renal Fibrosis in Acute Kidney Injury and Chronic Kidney Disease.

Drug Des Devel Ther. 2025-7-6

[9]
Yiqi Yangyin Tongluo Recipe Alleviates Diabetic Kidney Disease Through AGE-RAGE Signalling Axis.

Diabetes Metab Syndr Obes. 2025-6-28

[10]
Effects and Mechanisms of Paeoniflorin in Relieving Neuropathic Pain: Network Pharmacological Analysis and Experimental Validation.

Neurochem Res. 2025-5-9

本文引用的文献

[1]
Identification and validation of immune-related biomarkers and potential regulators and therapeutic targets for diabetic kidney disease.

BMC Med Genomics. 2023-5-1

[2]
Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action.

Cell Mol Life Sci. 2022-10-4

[3]
Dissecting the Activity of Catechins as Incomplete Aldose Reductase Differential Inhibitors through Kinetic and Computational Approaches.

Biology (Basel). 2022-9-6

[4]
The Burden of Diabetes-Related Chronic Kidney Disease in China From 1990 to 2019.

Front Endocrinol (Lausanne). 2022

[5]
wSDTNBI: a novel network-based inference method for virtual screening.

Chem Sci. 2021-12-21

[6]
METTL3-mediated mA modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy.

Mol Ther. 2022-4-6

[7]
Identification of Hub Genes and Potential ceRNA Networks of Diabetic Nephropathy by Weighted Gene Co-Expression Network Analysis.

Front Genet. 2021-11-1

[8]
Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus.

Pharmaceuticals (Basel). 2021-8-17

[9]
Identification of 13 Guanidinobenzoyl- or Aminidinobenzoyl-Containing Drugs to Potentially Inhibit TMPRSS2 for COVID-19 Treatment.

Int J Mol Sci. 2021-6-30

[10]
Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy.

Redox Biol. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索