Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
Drug Des Devel Ther. 2024 Apr 30;18:1439-1457. doi: 10.2147/DDDT.S445254. eCollection 2024.
Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically.
First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated.
Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1β, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway.
Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.
毛蕊花糖苷是多种药用植物中的一种活性成分,在治疗糖尿病肾病(DKD)方面具有显著疗效。然而,毛蕊花糖苷治疗 DKD 的内在药理作用机制尚不清楚。本研究采用网络药理学与实验验证相结合的方法,系统地探讨潜在的分子机制。
首先,从公共数据库中收集毛蕊花糖苷的潜在靶点和 DKD 相关靶点。然后,利用蛋白质-蛋白质相互作用(PPI)网络,结合 GO 和 KEGG 通路富集分析,构建靶点-通路网络,以确定核心潜在治疗靶点和通路。进一步通过分子对接验证毛蕊花糖苷与核心靶点的相互作用。最后,通过单侧肾切除联合链脲佐菌素(STZ)大鼠模型验证毛蕊花糖苷治疗 DKD 的假设分子机制,并进一步研究其下游机制。
网络药理学鉴定出 129 个毛蕊花糖苷治疗 DKD 的潜在交集靶点,包括 AKT1、TNF、Casp3、MMP9、SRC、IGF1、EGFR、HRAS、CASP8 和 MAPK8 等靶点。富集分析表明,PI3K-Akt、MAPK、代谢和松弛素信号通路可能参与这一治疗过程。分子对接显示毛蕊花糖苷与 PIK3R1、AKT1 和 NF-κB1 具有高亲和力结合。体内研究验证了毛蕊花糖苷的治疗效果,表现为降低血糖水平、改善血清 Scr 和 BUN 水平、减少 24 小时尿总蛋白(P<0.05)、减轻足细胞损伤(P<0.05)和改善肾脏病理损伤。此外,这一发现表明,毛蕊花糖苷通过调节 PI3K/AKT/NF-κB 信号通路抑制焦亡标志物 NLRP3、Caspase-1、IL-1β 和 IL-18 的表达。
毛蕊花糖苷通过调节 PI3K/AKT/NF-κB 信号通路和减轻焦亡,在 DKD 中发挥肾脏保护作用。本研究探讨了毛蕊花糖苷治疗 DKD 的药理作用机制,为进一步的基础和临床研究提供了依据。