Fang Yingyan, Su Zhenhong, Si Wenxia, Liu Yuancheng, Li Jie, Zeng Peng
Department of Basic Medical Sciences, School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jan 30;41(1):10-19. doi: 10.12122/j.issn.1673-4254.2021.01.02.
To investigate the therapeutic mechanism of resveratrol (RES) for Alzheimer's disease (AD) in light of network pharmacology.
We searched PubChem, BATMAN-TCM, Genecards, AD, TTD, String 11.0, AlzData, SwissTargetPrediction, Metascape and other databases for the therapeutic targets of RES and human AD-related targets. The intersection was determined using Venny 2.1 to obtain the therapeutic targets of RES for AD. The protein-protein interaction (PPI) network was constructed, the gene ontology (GO) was enriched and the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) were analyzed. Cytoscape 3.7.1 software was used to construct a target-signaling pathway network of RES in the treatment of AD. Molecular docking verification was carried out on SwissDock (http://www.swissdock.ch/docking). We examined a 293Tau cell model of AD for changes in protein levels of pS396, pS199, Tau5, CDK5, glycogen synthase kinase 3β (GSK3β) and p-GSK3β in response to RES treatment using Western blotting.
We obtained 182 targets of RES, 525 targets related to AD, and 36 targets of RES for AD treatment, among which 34.6% of the targets were protein-modifying enzymes, 27.7% were metabolite invertase, 13.8% were gene-specific transcriptional regulators, and 10.3% were transporters. The core key targets of RES in the treatment of AD included INS, APP, ESR1, MMP9, IGF1R, CACNA1C, MAPT (microtubule- associated protein Tau), MMP2, TGFB1 and GSK3B. Enrichment analysis of GO biological process suggested that the biological function of RES in AD treatment mainly involved the response to β-amyloid protein, positive regulation of transferase activity, the transmembrane receptor protein tyrosine kinase signaling pathway, regulation of behavior, learning or memory, aging, and transmembrane transport. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathways were AD pathway, PI3K-AKT signaling pathway, cGMP-PKG signaling pathway, and MAPK signaling pathway. Molecular docking results showed that RES had strong binding with ESR1, GSK3B, MMP9, IGF1R, APP and INS. In the cell model of AD, treatment with 50 μmol/L RES for 12 h significantly reduced the levels of pS396 and pS199 by regulating CDK5 and GSK3β activity ( < 0.001).
RES produces therapeutic effects on AD by acting on multiple targets and affecting multiple signaling pathways and improves AD-associated pathologies a direct action on Aβ and Tau pathological processes.
基于网络药理学探讨白藜芦醇(RES)治疗阿尔茨海默病(AD)的作用机制。
在PubChem、BATMAN-TCM、Genecards、AD、TTD、String 11.0、AlzData、SwissTargetPrediction、Metascape等数据库中检索RES的治疗靶点及人类AD相关靶点。使用Venny 2.1确定交集,以获得RES治疗AD的靶点。构建蛋白质-蛋白质相互作用(PPI)网络,进行基因本体论(GO)富集分析及京都基因与基因组百科全书通路(KEGG通路)分析。使用Cytoscape 3.7.1软件构建RES治疗AD的靶点-信号通路网络。在SwissDock(http://www.swissdock.ch/docking)上进行分子对接验证。采用蛋白质免疫印迹法检测AD的293Tau细胞模型中,RES处理后pS396、pS199、Tau5、细胞周期蛋白依赖性激酶5(CDK5)、糖原合酶激酶3β(GSK3β)和磷酸化GSK3β(p-GSK3β)蛋白水平的变化。
我们获得了182个RES靶点、525个AD相关靶点以及36个RES治疗AD的靶点,其中34.6%的靶点为蛋白质修饰酶,27.7%为代谢物转化酶,13.8%为基因特异性转录调节因子,10.3%为转运蛋白。RES治疗AD的核心关键靶点包括胰岛素(INS)、淀粉样前体蛋白(APP)、雌激素受体1(ESR1)、基质金属蛋白酶9(MMP9)、胰岛素样生长因子1受体(IGF1R)、L型钙通道α1C亚基(CACNA1C)、微管相关蛋白Tau(MAPT)、基质金属蛋白酶2(MMP2)、转化生长因子β1(TGFB1)和GSK3B。GO生物学过程富集分析表明,RES在AD治疗中的生物学功能主要涉及对β-淀粉样蛋白的反应、转移酶活性的正调控、跨膜受体蛋白酪氨酸激酶信号通路、行为、学习或记忆、衰老的调节以及跨膜转运。KEGG通路富集分析显示,最显著富集的信号通路为AD通路、磷脂酰肌醇-3激酶-蛋白激酶B(PI3K-AKT)信号通路、环磷酸鸟苷-蛋白激酶G(cGMP-PKG)信号通路和丝裂原活化蛋白激酶(MAPK)信号通路。分子对接结果显示,RES与ESR1、GSK3B、MMP9、IGF1R、APP和INS具有较强的结合力。在AD细胞模型中,50 μmol/L RES处理12 h可通过调节CDK5和GSK3β活性显著降低pS396和pS199水平(P<0.001)。
RES通过作用于多个靶点、影响多条信号通路对AD产生治疗作用,并改善AD相关病理变化,对Aβ和Tau病理过程有直接作用。