Suppr超能文献

一种基于 τ 形卷积网络 (τNet) 和长短时记忆 (LSTM) 的新型深度学习模型,用于从 EEG 和 EOG 信号中检测生理疲劳。

A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals.

机构信息

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1781-1793. doi: 10.1007/s11517-024-03033-y. Epub 2024 Feb 20.

Abstract

In recent years, fatigue driving has become the main cause of traffic accidents, leading to increased attention towards fatigue detection systems. However, the pooling and strided convolutional operations in fatigue detection algorithm based on traditional deep learning methods may led to the loss of some useful information. This paper proposed a novel -shaped convolutional network ( ) aiming to address this issue. Unlike traditional network structures, incorporates the operations of upsampling features and concatenating high- and low-level features, enabling full utilization of useful information. Moreover, considering that the fatigue state is a mental state involving temporal evolution, we proposed the novel long short-term memory (LSTM)- -shaped convolutional network (LSTM- ), a parallel structure composed of LSTM and for fatigue detection, where extracts time-invariant features with location information, and LSTM extracts long temporal dependencies. We compared LSTM- with six competing methods based on two datasets. Results showed that the proposed algorithm achieved higher classification accuracy than the other methods, with 94.25% on EEG data (binary classification) and 82.19% on EOG data (triple classification). Additionally, the proposed algorithm exhibits low computational cost, good training stability, and robustness against insufficient training. Therefore, it is promising for further implementation of fatigue online detection systems.

摘要

近年来,疲劳驾驶已成为交通事故的主要原因,因此人们越来越关注疲劳检测系统。然而,基于传统深度学习方法的疲劳检测算法中的池化和跨步卷积操作可能会导致一些有用信息的丢失。本文提出了一种新颖的 - 形卷积网络( ),旨在解决这个问题。与传统的网络结构不同, 包含了上采样特征和连接高低层特征的操作,从而能够充分利用有用信息。此外,考虑到疲劳状态是一种涉及时间演变的心理状态,我们提出了新颖的长短时记忆(LSTM)- - 形卷积网络(LSTM- ),这是一种由 LSTM 和 组成的并行结构,用于疲劳检测,其中 提取具有位置信息的时不变特征,而 LSTM 提取长期依赖关系。我们基于两个数据集,将 LSTM- 与六种竞争方法进行了比较。结果表明,所提出的算法在 EEG 数据(二分类)和 EOG 数据(三分类)上的分类准确率均高于其他方法,分别为 94.25%和 82.19%。此外,该算法还具有计算成本低、训练稳定性好、对训练不足具有鲁棒性等优点。因此,它有望进一步实现疲劳在线检测系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验