Suppr超能文献

脑液-GTNet:一种基于 Convnext-GeLU-BiLSTM 的新型多维特征融合网络,用于 EEG 信号驱动的疲劳检测。

CSF-GTNet: A Novel Multi-Dimensional Feature Fusion Network Based on Convnext-GeLU- BiLSTM for EEG-Signals-Enabled Fatigue Driving Detection.

出版信息

IEEE J Biomed Health Inform. 2024 May;28(5):2558-2568. doi: 10.1109/JBHI.2023.3240891. Epub 2024 May 6.

Abstract

Electroencephalography (EEG) signal has been recognized as an effective fatigue detection method, which can intuitively reflect the drivers' mental state. However, the research on multi-dimensional features in existing work could be much better. The instability and complexity of EEG signals will increase the difficulty of extracting data features. More importantly, most current work only treats deep learning models as classifiers. They ignored the features of different subjects learned by the model. Aiming at the above problems, this paper proposes a novel multi-dimensional feature fusion network, CSF-GTNet, based on time and space-frequency domains for fatigue detection. Specifically, it comprises Gaussian Time Domain Network (GTNet) and Pure Convolutional Spatial Frequency Domain Network (CSFNet). The experimental results show that the proposed method effectively distinguishes between alert and fatigue states. The accuracy rates are 85.16% and 81.48% on the self-made and SEED-VIG datasets, respectively, which are higher than the state-of-the-art methods. Moreover, we analyze the contribution of each brain region for fatigue detection through the brain topology map. In addition, we explore the changing trend of each frequency band and the significance between different subjects in the alert state and fatigue state through the heat map. Our research can provide new ideas in brain fatigue research and play a specific role in promoting the development of this field.

摘要

脑电图(EEG)信号已被公认为一种有效的疲劳检测方法,它可以直观地反映驾驶员的精神状态。然而,现有研究在多维特征方面还有很大的改进空间。EEG 信号的不稳定性和复杂性增加了提取数据特征的难度。更重要的是,目前大多数研究仅将深度学习模型视为分类器,而忽略了模型学习到的不同受试者的特征。针对上述问题,本文提出了一种新颖的基于时频域的多维特征融合网络 CSF-GTNet 进行疲劳检测。具体来说,它由高斯时域网络(GTNet)和纯卷积空间频率域网络(CSFNet)组成。实验结果表明,该方法能够有效区分警觉和疲劳状态。在自制数据集和 SEED-VIG 数据集上的准确率分别为 85.16%和 81.48%,高于现有方法。此外,我们通过脑拓扑图分析了每个脑区对疲劳检测的贡献。此外,我们还通过热图探讨了警觉状态和疲劳状态下每个频带的变化趋势以及不同受试者之间的显著性。我们的研究可以为脑疲劳研究提供新的思路,在推动该领域的发展方面发挥特定作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验