Suppr超能文献

用于前列腺癌患者磁共振成像上神经血管结构自动轮廓勾画的深度学习

Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients.

作者信息

van den Berg Ingeborg, Savenije Mark H F, Teunissen Frederik R, van de Pol Sandrine M G, Rasing Marnix J A, van Melick Harm H E, Brink Wyger M, de Boer Johannes C J, van den Berg Cornelis A T, van der Voort van Zyp Jochem R N

机构信息

Department of Radiation Oncology, Division of Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.

Department of Urology, St. Antonius Hospital, Nieuwegein, Utrecht, The Netherlands.

出版信息

Phys Imaging Radiat Oncol. 2023 Jun 1;26:100453. doi: 10.1016/j.phro.2023.100453. eCollection 2023 Apr.

Abstract

BACKGROUND AND PURPOSE

Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement.

MATERIALS AND METHODS

Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded.

RESULTS

nnU-Net achieved a median DSC of 0.92 (IQR: 0.90-0.93) for the PB, 0.90 (IQR: 0.86-0.92) for the CCs, 0.79 (IQR: 0.77-0.83) for the IPAs, and 0.77 (IQR: 0.72-0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes.

CONCLUSIONS

DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy.

摘要

背景与目的

在前列腺磁共振成像(MRI)上手动勾勒神经血管结构既费力又容易出现评分者间的显著差异。我们的目标是通过深度学习(DL)在前列腺MRI上自动勾勒神经血管结构,以改善工作流程和评分者间的一致性。

材料与方法

对131例前列腺癌患者的治疗前3.0T MRI数据进行神经血管结构分割(训练组[n = 105]和测试组[n = 26])。神经血管结构包括阴茎球(PB)、海绵体(CCs)、阴部内动脉(IPAs)和神经血管束(NVBs)。训练了两个DL网络nnU-Net和DeepMedic,用于在前列腺MRI上自动勾勒轮廓,并使用体积骰子相似系数(DSC)、平均表面距离(MSD)、豪斯多夫距离和表面DSC进行评估。三名放射肿瘤学家评估了DL生成的轮廓,并在必要时进行校正。评估了评分者间的一致性,并记录了手动校正所需的时间。

结果

nnU-Net对PB的DSC中位数为0.92(IQR:0.90 - 0.93),对CCs为0.90(IQR:0.86 - 0.92),对IPAs为0.79(IQR:0.77 - 0.83),对NVBs为0.77(IQR:0.72 - 0.81),在每个结构上均优于DeepMedic(p < 0.03)。nnU-Net对IPAs的MSD中位数为0.24mm,对NVBs为0.71mm。评分者间DSC中位数范围为0.93至1.00,大多数病例(68.9%)手动校正时间在两分钟以内。

结论

DL能够在治疗前MRI数据上可靠地自动勾勒神经血管结构,简化了保留神经血管的MR引导放疗的临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c50b/10258498/0aea04995c36/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验