Suppr超能文献

使用集成方法对凝析气粘度进行组成建模。

Compositional modeling of gas-condensate viscosity using ensemble approach.

机构信息

Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran.

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

出版信息

Sci Rep. 2023 Jun 14;13(1):9659. doi: 10.1038/s41598-023-36122-3.

Abstract

In gas-condensate reservoirs, liquid dropout occurs by reducing the pressure below the dew point pressure in the area near the wellbore. Estimation of production rate in these reservoirs is important. This goal is possible if the amount of viscosity of the liquids released below the dew point is available. In this study, the most comprehensive database related to the viscosity of gas condensate, including 1370 laboratory data was used. Several intelligent techniques, including Ensemble methods, support vector regression (SVR), K-nearest neighbors (KNN), Radial basis function (RBF), and Multilayer Perceptron (MLP) optimized by Bayesian Regularization and Levenberg-Marquardt were applied for modeling. In models presented in the literature, one of the input parameters for the development of the models is solution gas oil ratio (Rs). Measuring Rs in wellhead requires special equipment and is somewhat difficult. Also, measuring this parameter in the laboratory requires spending time and money. According to the mentioned cases, in this research, unlike the research done in the literature, Rs parameter was not used to develop the models. The input parameters for the development of the models presented in this research were temperature, pressure and condensate composition. The data used includes a wide range of temperature and pressure, and the models presented in this research are the most accurate models to date for predicting the condensate viscosity. Using the mentioned intelligent approaches, precise compositional models were presented to predict the viscosity of gas/condensate at different temperatures and pressures for different gas components. Ensemble method with an average absolute percent relative error (AAPRE) of 4.83% was obtained as the most accurate model. Moreover, the AAPRE values for SVR, KNN, MLP-BR, MLP-LM, and RBF models developed in this study are 4.95%, 5.45%, 6.56%, 7.89%, and 10.9%, respectively. Then, the effect of input parameters on the viscosity of the condensate was determined by the relevancy factor using the results of the Ensemble methods. The most negative and positive effects of parameters on the gas condensate viscosity were related to the reservoir temperature and the mole fraction of C, respectively. Finally, suspicious laboratory data were determined and reported using the leverage technique.

摘要

在含气凝析油储层中,通过降低井筒附近区域的压力低于露点压力,会发生液体流失。估算这些储层的产量是很重要的。如果能得到低于露点释放的液体的粘度值,就可以实现这一目标。在这项研究中,使用了最全面的与凝析油粘度有关的数据库,包括 1370 个实验室数据。应用了几种智能技术,包括集成方法、支持向量回归(SVR)、K-最近邻(KNN)、径向基函数(RBF)和贝叶斯正则化和列文伯格-马夸尔特优化的多层感知器(MLP),用于建模。在文献中提出的模型中,模型开发的一个输入参数是平衡地层油气体积系数(Rs)。在井口测量 Rs 需要特殊设备,而且有点困难。此外,在实验室测量该参数需要花费时间和金钱。根据上述情况,在本研究中,与文献中的研究不同,未使用 Rs 参数来开发模型。模型开发的输入参数是温度、压力和凝析油组成。所使用的数据包括广泛的温度和压力范围,本研究中提出的模型是迄今为止预测凝析油粘度最准确的模型。使用上述智能方法,提出了精确的组成模型,用于预测不同气体组成、不同温度和压力下的天然气/凝析油的粘度。集成方法的平均绝对百分比相对误差(AAPRE)为 4.83%,是最准确的模型。此外,本研究中开发的 SVR、KNN、MLP-BR、MLP-LM 和 RBF 模型的 AAPRE 值分别为 4.95%、5.45%、6.56%、7.89%和 10.9%。然后,通过集成方法的结果,利用相关性因子确定输入参数对凝析油粘度的影响。参数对凝析油粘度的最负和最正影响分别与储层温度和 C 的摩尔分数有关。最后,使用杠杆技术确定并报告可疑的实验室数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dda/10267160/1d3a17f1708a/41598_2023_36122_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验