Suppr超能文献

绘制西非疟疾媒介栖息地地图:用于靶向媒介监测的无人机图像与深度学习分析

Mapping Malaria Vector Habitats in West Africa: Drone Imagery and Deep Learning Analysis for Targeted Vector Surveillance.

作者信息

Trujillano Fedra, Garay Gabriel Jimenez, Alatrista-Salas Hugo, Byrne Isabel, Nunez-Del-Prado Miguel, Chan Kallista, Manrique Edgar, Johnson Emilia, Apollinaire Nombre, Kouame Kouakou Pierre, Oumbouke Welbeck A, Tiono Alfred B, Guelbeogo Moussa W, Lines Jo, Carrasco-Escobar Gabriel, Fornace Kimberly

机构信息

Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima 15102, Peru.

School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Remote Sens (Basel). 2023 May 26;15(11):2775. doi: 10.3390/rs15112775.

Abstract

Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d'Ivoire were assembled and labeled using open-source tools. We developed and applied a workflow using region-of-interest-based and deep learning methods to identify land cover types associated with vector breeding sites from very-high-resolution natural color imagery. Analysis methods were assessed using cross-validation and achieved maximum Dice coefficients of 0.68 and 0.75 for vegetated and non-vegetated water bodies, respectively. This classifier consistently identified the presence of other land cover types associated with the breeding sites, obtaining Dice coefficients of 0.88 for tillage and crops, 0.87 for buildings and 0.71 for roads. This study establishes a framework for developing deep learning approaches to identify vector breeding sites and highlights the need to evaluate how results will be used by control programs.

摘要

需要开展疾病控制项目来确定传播疟疾和其他疾病的蚊子的繁殖地点,以便进行针对性干预并识别环境风险因素。超高分辨率无人机数据的日益普及为寻找和描述这些病媒繁殖地点提供了新机遇。在本研究中,利用开源工具收集并标注了来自布基纳法索和科特迪瓦两个疟疾流行地区的无人机图像。我们开发并应用了一种工作流程,使用基于感兴趣区域和深度学习的方法,从超高分辨率自然彩色图像中识别与病媒繁殖地点相关的土地覆盖类型。使用交叉验证对分析方法进行了评估,对于植被覆盖水体和非植被覆盖水体,最大骰子系数分别达到0.68和0.75。该分类器始终能识别出与繁殖地点相关的其他土地覆盖类型的存在,对于耕地和农作物的骰子系数为0.88,对于建筑物为0.87,对于道路为0.71。本研究建立了一个开发深度学习方法以识别病媒繁殖地点的框架,并强调了评估控制项目将如何使用这些结果的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40b5/7614662/d24f6a45016b/EMS176389-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验