Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15260.
Department of Biophysics, Faculty of Physics Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University in Toruń, Toruń, Poland.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2218896120. doi: 10.1073/pnas.2218896120. Epub 2023 Jun 16.
Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.
铁死亡程序性细胞死亡消除了由于硫醇(谷胱甘肽(GSH))不足而无法充分控制下铁催化的脂质过氧化引起的氧化还原代谢失衡的所有主要器官和组织中的细胞。铁死亡与重大慢性退行性疾病和大脑、心血管系统、肝脏、肾脏和其他器官的急性损伤的发病机制有关,其操纵为癌症治疗提供了一种有前途的新策略。这解释了设计针对铁死亡的新型小分子特异性抑制剂的高度兴趣。鉴于 15-脂氧合酶(15LOX)与磷脂酰乙醇胺(PE)结合蛋白 1(PEBP1)的关联在引发多不饱和 PE 的铁死亡特异性过氧化中的作用,我们提出了一种发现抗铁死亡剂的策略,作为 15LOX/PEBP1 催化复合物而不是单独 15LOX 的抑制剂。在这里,我们使用生化、分子和细胞生物学模型以及氧化还原脂质组学和计算分析设计、合成和测试了 26 种化合物的定制文库。我们选择了两种先导化合物 FerroLOXIN-1 和 2,它们有效地抑制了体外和体内的铁死亡,而不会影响体内促炎/抗炎脂质介质的生物合成。这些先导化合物的有效性不是由于自由基清除或铁螯合,而是由于它们与 15LOX-2/PEBP1 复合物的特定相互作用机制所致,这些机制要么以非生产性方式改变底物 [二十碳四烯酰-PE(ETE-PE)] 的结合构象,要么阻断主要的氧通道,从而阻止 ETE-PE 过氧化的催化。我们成功的策略可以适用于设计其他化学文库,以揭示新的针对铁死亡的治疗模式。