Suppr超能文献

基于全局上下文注意力增强 YOLO 的 ConvMixer 预测头的 PCB 表面缺陷检测。

Global contextual attention augmented YOLO with ConvMixer prediction heads for PCB surface defect detection.

机构信息

School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.

出版信息

Sci Rep. 2023 Jun 16;13(1):9805. doi: 10.1038/s41598-023-36854-2.

Abstract

To solve the problem of missed and false detection caused by the large number of tiny targets and complex background textures in a printed circuit board (PCB), we propose a global contextual attention augmented YOLO model with ConvMixer prediction heads (GCC-YOLO). In this study, we apply a high-resolution feature layer (P2) to gain more details and positional information of small targets. Moreover, in order to suppress the background noisy information and further enhance the feature extraction capability, a global contextual attention module (GC) is introduced in the backbone network and combined with a C3 module. Furthermore, in order to reduce the loss of shallow feature information due to the deepening of network layers, a bi-directional weighted feature pyramid (BiFPN) feature fusion structure is introduced. Finally, a ConvMixer module is introduced and combined with the C3 module to create a new prediction head, which improves the small target detection capability of the model while reducing the parameters. Test results on the PCB dataset show that GCC-YOLO improved the Precision, Recall, mAP@0.5, and mAP@0.5:0.95 by 0.2%, 1.8%, 0.5%, and 8.3%, respectively, compared to YOLOv5s; moreover, it has a smaller model volume and faster reasoning speed compared to other algorithms.

摘要

为了解决印刷电路板(PCB)中大量微小目标和复杂背景纹理导致的漏检和误检问题,我们提出了一种具有 ConvMixer 预测头的全局上下文注意力增强 YOLO 模型(GCC-YOLO)。在这项研究中,我们应用了一个高分辨率特征层(P2)来获取更多关于小目标的细节和位置信息。此外,为了抑制背景噪声信息并进一步增强特征提取能力,在骨干网络中引入了全局上下文注意力模块(GC),并与 C3 模块相结合。此外,为了减少由于网络层加深而导致的浅层特征信息的损失,引入了双向加权特征金字塔(BiFPN)特征融合结构。最后,引入了 ConvMixer 模块并与 C3 模块相结合,创建了一个新的预测头,在提高模型小目标检测能力的同时减少了参数。在 PCB 数据集上的测试结果表明,与 YOLOv5s 相比,GCC-YOLO 在精度、召回率、mAP@0.5mAP@0.5:0.95 方面分别提高了 0.2%、1.8%、0.5%和 8.3%;此外,与其他算法相比,它的模型体积更小,推理速度更快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31e/10276043/c10e8ef88a06/41598_2023_36854_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验