School of Mechanical and Power Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
Sci Rep. 2023 Jun 16;13(1):9805. doi: 10.1038/s41598-023-36854-2.
To solve the problem of missed and false detection caused by the large number of tiny targets and complex background textures in a printed circuit board (PCB), we propose a global contextual attention augmented YOLO model with ConvMixer prediction heads (GCC-YOLO). In this study, we apply a high-resolution feature layer (P2) to gain more details and positional information of small targets. Moreover, in order to suppress the background noisy information and further enhance the feature extraction capability, a global contextual attention module (GC) is introduced in the backbone network and combined with a C3 module. Furthermore, in order to reduce the loss of shallow feature information due to the deepening of network layers, a bi-directional weighted feature pyramid (BiFPN) feature fusion structure is introduced. Finally, a ConvMixer module is introduced and combined with the C3 module to create a new prediction head, which improves the small target detection capability of the model while reducing the parameters. Test results on the PCB dataset show that GCC-YOLO improved the Precision, Recall, mAP@0.5, and mAP@0.5:0.95 by 0.2%, 1.8%, 0.5%, and 8.3%, respectively, compared to YOLOv5s; moreover, it has a smaller model volume and faster reasoning speed compared to other algorithms.
为了解决印刷电路板(PCB)中大量微小目标和复杂背景纹理导致的漏检和误检问题,我们提出了一种具有 ConvMixer 预测头的全局上下文注意力增强 YOLO 模型(GCC-YOLO)。在这项研究中,我们应用了一个高分辨率特征层(P2)来获取更多关于小目标的细节和位置信息。此外,为了抑制背景噪声信息并进一步增强特征提取能力,在骨干网络中引入了全局上下文注意力模块(GC),并与 C3 模块相结合。此外,为了减少由于网络层加深而导致的浅层特征信息的损失,引入了双向加权特征金字塔(BiFPN)特征融合结构。最后,引入了 ConvMixer 模块并与 C3 模块相结合,创建了一个新的预测头,在提高模型小目标检测能力的同时减少了参数。在 PCB 数据集上的测试结果表明,与 YOLOv5s 相比,GCC-YOLO 在精度、召回率、mAP@0.5 和 mAP@0.5:0.95 方面分别提高了 0.2%、1.8%、0.5%和 8.3%;此外,与其他算法相比,它的模型体积更小,推理速度更快。