Ali Baber, Hafeez Aqsa, Afridi Muhammad Siddique, Javed Muhammad Ammar, Suleman Faiza, Nadeem Mehwish, Ali Shehzad, Alwahibi Mona S, Elshikh Mohamed S, Marc Romina Alina, Ercisli Sezai, Darwish Doaa Bahaa Eldin
Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan 45320.
Department of Plant Pathology, Federal University of Lavras, Lavras, MG, Brazil 37200-900.
ACS Omega. 2023 May 26;8(23):20471-20487. doi: 10.1021/acsomega.3c00723. eCollection 2023 Jun 13.
Sustainable agriculture is threatened by salinity stress because of the low yield quality and low crop production. Rhizobacteria that promote plant growth modify physiological and molecular pathways to support plant development and reduce abiotic stresses. The recent study aimed to assess the tolerance capacity and impacts of sp. PM31 on the growth, physiological, and molecular responses of maize to salinity stress. In comparison to uninoculated plants, the inoculation of sp. PM31 improved the agro-morphological traits [shoot length (6%), root length (22%), plant height (16%), fresh weight (39%), dry weight (29%), leaf area (11%)], chlorophyll [Chl (17%), Chl (37%), total chl (22%)], carotenoids (15%), proteins (40%), sugars (43%), relative water (11%), flavonoids (22%), phenols (23%), radical scavenging capacity (13%), and antioxidants. The sp. PM31-inoculated plants showed a reduction in the oxidative stress indicators [electrolyte leakage (12%), HO (9%), and MDA (32%)] as compared to uninoculated plants under salinity and increased the level of osmolytes [free amino acids (36%), glycine betaine (17%), proline (11%)]. The enhancement of plant growth under salinity was further validated by the molecular profiling of sp. PM31. Moreover, these physiological and molecular mechanisms were accompanied by the upregulation of stress-related genes (APX and SOD). Our study found that sp. PM31 has a crucial and substantial role in reducing salinity stress through physiological and molecular processes, which may be used as an alternative approach to boost crop production and yield.
可持续农业受到盐胁迫的威胁,因为产量质量低且作物产量不高。促进植物生长的根际细菌会改变生理和分子途径,以支持植物发育并减轻非生物胁迫。最近的研究旨在评估sp. PM31对玉米在盐胁迫下的生长、生理和分子反应的耐受能力及影响。与未接种的植物相比,接种sp. PM31改善了农业形态特征[茎长(6%)、根长(22%)、株高(16%)、鲜重(39%)、干重(29%)、叶面积(11%)]、叶绿素[叶绿素a(17%)、叶绿素b(37%)、总叶绿素(22%)]、类胡萝卜素(15%)、蛋白质(40%)、糖类(43%)、相对含水量(11%)、黄酮类化合物(22%)、酚类(23%)、自由基清除能力(13%)和抗氧化剂。与盐胁迫下未接种的植物相比,接种sp. PM31的植物氧化应激指标[电解质渗漏(12%)、过氧化氢(9%)和丙二醛(32%)]有所降低,渗透调节物质[游离氨基酸(36%)、甘氨酸甜菜碱(17%)、脯氨酸(11%)]水平有所提高。sp. PM31的分子图谱进一步验证了盐胁迫下植物生长的增强。此外,这些生理和分子机制伴随着胁迫相关基因(APX和SOD)的上调。我们的研究发现,sp. PM31在通过生理和分子过程减轻盐胁迫方面具有关键且重要的作用,这可作为提高作物产量和产量的替代方法。