Suppr超能文献

β冠状病毒非结构蛋白1结合核糖体并抑制核糖体的一种进化保守策略。

An evolutionarily conserved strategy for ribosome binding and inhibition by β-coronavirus non-structural protein 1.

作者信息

Maurina Stephanie F, O'Sullivan John P, Sharma Geetika, Pineda Rodriguez Daniel C, MacFadden Andrea, Cendali Francesca, Henen Morkos A, Kieft Jeffrey S, Glasgow Anum, Steckelberg Anna-Lena

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA.

出版信息

bioRxiv. 2023 Jun 8:2023.06.07.544141. doi: 10.1101/2023.06.07.544141.

Abstract

An important pathogenicity factor of SARS-CoV-2 and related coronaviruses is Nsp1, which suppresses host gene expression and stunts antiviral signaling. SARS-CoV-2 Nsp1 binds the ribosome to inhibit translation through mRNA displacement and induces degradation of host mRNAs through an unknown mechanism. Here we show that Nsp1-dependent host shutoff is conserved in diverse coronaviruses, but only Nsp1 from β-CoV inhibits translation through ribosome binding. The C-terminal domain of all β-CoV Nsp1s confers high-affinity ribosome-binding despite low sequence conservation. Modeling of interactions of four Nsp1s to the ribosome identified few absolutely conserved amino acids that, together with an overall conservation in surface charge, form the β-CoV Nsp1 ribosome-binding domain. Contrary to previous models, the Nsp1 ribosome-binding domain is an inefficient translation inhibitor. Instead, the Nsp1-CTD likely functions by recruiting Nsp1's N-terminal "effector" domain. Finally, we show that a viral -acting RNA element has co-evolved to fine-tune SARS-CoV-2 Nsp1 function, but does not provide similar protection against Nsp1 from related viruses. Together, our work provides new insight into the diversity and conservation of ribosome-dependent host-shutoff functions of Nsp1, knowledge that could aide future efforts in pharmacological targeting of Nsp1 from SARS-CoV-2, but also related human-pathogenic β-coronaviruses. Our study also exemplifies how comparing highly divergent Nsp1 variants can help to dissect the different modalities of this multi-functional viral protein.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)及相关冠状病毒的一个重要致病因素是Nsp1,它会抑制宿主基因表达并阻碍抗病毒信号传导。SARS-CoV-2 Nsp1与核糖体结合,通过mRNA置换抑制翻译,并通过未知机制诱导宿主mRNA降解。我们在此表明,Nsp1依赖性宿主关闭在多种冠状病毒中是保守的,但只有β冠状病毒的Nsp1通过核糖体结合抑制翻译。尽管序列保守性较低,但所有β冠状病毒Nsp1的C末端结构域都赋予了高亲和力的核糖体结合能力。对四种Nsp1与核糖体相互作用的建模确定了少数绝对保守的氨基酸,这些氨基酸与表面电荷的整体保守性一起,形成了β冠状病毒Nsp1核糖体结合结构域。与先前的模型相反,Nsp1核糖体结合结构域是一种低效的翻译抑制剂。相反,Nsp1-CTD可能通过招募Nsp1的N末端“效应器”结构域发挥作用。最后,我们表明一种病毒顺式作用RNA元件已经共同进化以微调SARS-CoV-2 Nsp1的功能,但不能为相关病毒的Nsp1提供类似的保护。总之,我们的工作为Nsp1依赖核糖体的宿主关闭功能的多样性和保守性提供了新的见解,这些知识有助于未来针对SARS-CoV-2以及相关人类致病性β冠状病毒的Nsp1进行药理学靶向研究。我们的研究还例证了比较高度不同的Nsp1变体如何有助于剖析这种多功能病毒蛋白的不同作用方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d1/10274807/8cde7ef57ca0/nihpp-2023.06.07.544141v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验