Suppr超能文献

基于深度学习的水车植物算法在肺癌计算机辅助诊断中的应用。

Computer-aided diagnosis for lung cancer using waterwheel plant algorithm with deep learning.

机构信息

Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 4;14(1):20647. doi: 10.1038/s41598-024-71551-8.

Abstract

Lung cancer (LC) is a life-threatening and dangerous disease all over the world. However, earlier diagnoses and treatment can save lives. Earlier diagnoses of malevolent cells in the lungs responsible for oxygenating the human body and expelling carbon dioxide due to significant procedures are critical. Even though a computed tomography (CT) scan is the best imaging approach in the healthcare sector, it is challenging for physicians to identify and interpret the tumour from CT scans. LC diagnosis in CT scan using artificial intelligence (AI) can help radiologists in earlier diagnoses, enhance performance, and decrease false negatives. Deep learning (DL) for detecting lymph node contribution on histopathological slides has become popular due to its great significance in patient diagnoses and treatment. This study introduces a computer-aided diagnosis for LC by utilizing the Waterwheel Plant Algorithm with DL (CADLC-WWPADL) approach. The primary aim of the CADLC-WWPADL approach is to classify and identify the existence of LC on CT scans. The CADLC-WWPADL method uses a lightweight MobileNet model for feature extraction. Besides, the CADLC-WWPADL method employs WWPA for the hyperparameter tuning process. Furthermore, the symmetrical autoencoder (SAE) model is utilized for classification. An investigational evaluation is performed to demonstrate the significant detection outputs of the CADLC-WWPADL technique. An extensive comparative study reported that the CADLC-WWPADL technique effectively performs with other models with a maximum accuracy of 99.05% under the benchmark CT image dataset.

摘要

肺癌(LC)是一种危及生命的全球性疾病。然而,早期诊断和治疗可以挽救生命。由于需要进行重大程序,因此早期诊断负责为人体供氧和排出二氧化碳的肺部恶性细胞至关重要。尽管计算机断层扫描(CT)是医疗保健领域中最好的成像方法,但医生识别和解释 CT 扫描中的肿瘤具有挑战性。使用人工智能(AI)在 CT 扫描中进行 LC 诊断可以帮助放射科医生进行早期诊断、提高性能并减少假阴性。由于在患者诊断和治疗方面具有重要意义,因此用于检测组织病理学幻灯片中淋巴结贡献的深度学习(DL)已变得流行。本研究通过使用带 DL(CADLC-WWPADL)的水轮机算法引入了一种用于 LC 的计算机辅助诊断(CADLC-WWPADL)方法。CADLC-WWPADL 方法的主要目的是对 CT 扫描进行分类和识别是否存在 LC。CADLC-WWPADL 方法使用轻量级的 MobileNet 模型进行特征提取。此外,CADLC-WWPADL 方法还使用 WWPA 进行超参数调整过程。此外,还使用对称自动编码器(SAE)模型进行分类。进行了一项调查评估,以证明 CADLC-WWPADL 技术的显著检测输出。一项广泛的比较研究报告称,在基准 CT 图像数据集下,CADLC-WWPADL 技术与其他模型相比具有最高的 99.05%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/11375088/da681b7c58ad/41598_2024_71551_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验