Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland.
Biomater Sci. 2023 Jul 12;11(14):4972-4984. doi: 10.1039/d3bm00292f.
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
微流控芯片生产的聚合物水凝胶微球(MPs)可以设计用于装载不同的生物活性货物和活细胞。在不同的凝胶化策略中,离子交联的微球通常表现出有限的机械性能,而共价交联的微球通常需要使用具有有限生物相容性的交联剂或引发剂。逆电子需求 Diels-Alder(iEDDA)点击化学是一种有前途的共价交联方法,具有快速动力学、高化学选择性、高效率和无交叉反应性。本文采用水包油乳液(W/O)玻璃微流控技术,开发了可凝胶化的 iEDDA 交联聚合物水凝胶微球。微球由两个聚乙二醇前体组成,分别用四嗪或降冰片烯作为功能基团进行修饰。使用单个共流玻璃微流控平台,可在 2 分钟内制备出尺寸为 200-600μm 的均匀 MPs,并进行交联。iEDDA 交联的体凝胶的流变性能得以保持,在生理条件下具有低溶胀度和缓慢的降解行为。此外,还可以实现高蛋白质载药能力,并实现哺乳动物细胞的封装。总的来说,这项工作为开发微流控生产的 iEDDA 交联 MPs 作为生物医学领域潜在的药物载体和细胞封装系统提供了可能。