State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
Biomater Sci. 2023 Jul 25;11(15):5186-5194. doi: 10.1039/d3bm00142c.
Coating mesoporous drug carriers on the surface of persistent luminescence nanoparticles (PLNPs) not only allows continuous luminous imaging without spontaneous fluorescence interference, but also provides drug release guidance. However, in most cases, the encapsulation of the drug-loaded shells significantly reduces the luminescence of PLNPs, which is unfavorable for bioimaging. In addition, conventional drug-loaded shells alone, such as silica shells, have difficulty in achieving responsive fast drug release. Herein, we report the fabrication of mesoporous polyacrylic acid (PAA)/calcium phosphate (CaP) shell-coated PLNPs (PLNPs@PAA/CaP) for improved afterglow bioimaging and drug delivery. The encapsulation of the PAA/CaP shell effectively prolonged the decay time and enhanced the sustained luminescence of PLNPs by about three times due to the passivation of the surface defects of PLNPs by the shell, and the energy transfer between the shell and PLNPs. Meanwhile, the mesoporous structure and negative charge of the PAA/CaP shells enabled the prepared PLNPs@PAA/CaP to carry the positively charged drug doxycycline hydrochloride efficiently. Under the acidic conditions of bacterial infection, the degradation of PAA/CaP shells and the ionization of PAA enabled fast drug release for effective killing of bacteria at the infection site. The excellent persistent luminescence properties, outstanding biocompatibility, and rapid responsive release feature make the prepared PLNPs@PAA/CaP a promising nanoplatform for diagnostic and therapeutic applications.
将介孔药物载体包覆在持续发光纳米颗粒(PLNPs)的表面上,不仅可以实现无自发荧光干扰的连续发光成像,还可以提供药物释放的指导。然而,在大多数情况下,载药壳的封装会显著降低 PLNPs 的发光强度,这不利于生物成像。此外,传统的载药壳,如硅壳,本身就很难实现响应性的快速药物释放。在此,我们报告了介孔聚丙烯酸(PAA)/磷酸钙(CaP)壳包覆的 PLNPs(PLNPs@PAA/CaP)的制备,以改善余晖生物成像和药物递送。PAA/CaP 壳的封装通过壳对 PLNPs 表面缺陷的钝化以及壳与 PLNPs 之间的能量转移,有效地延长了 PLNPs 的衰减时间,并将其持续发光强度提高了约三倍。同时,PAA/CaP 壳的介孔结构和负电荷使制备的 PLNPs@PAA/CaP 能够有效地携带带正电荷的药物盐酸多西环素。在细菌感染的酸性条件下,PAA/CaP 壳的降解和 PAA 的离子化使药物能够快速释放,从而有效杀死感染部位的细菌。优异的持续发光性能、出色的生物相容性和快速响应释放特性使制备的 PLNPs@PAA/CaP 成为一种有前途的诊断和治疗应用的纳米平台。