Suppr超能文献

评估-HRI:一种用于分诊出血伤员的人工智能算法。

APPRAISE-HRI: AN ARTIFICIAL INTELLIGENCE ALGORITHM FOR TRIAGE OF HEMORRHAGE CASUALTIES.

机构信息

US Army Institute of Surgical Research, Fort Sam Houston, Texas.

Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

Shock. 2023 Aug 1;60(2):199-205. doi: 10.1097/SHK.0000000000002166. Epub 2023 Jun 19.

Abstract

Background: Hemorrhage remains the leading cause of death on the battlefield. This study aims to assess the ability of an artificial intelligence triage algorithm to automatically analyze vital-sign data and stratify hemorrhage risk in trauma patients. Methods: Here, we developed the APPRAISE-Hemorrhage Risk Index (HRI) algorithm, which uses three routinely measured vital signs (heart rate and diastolic and systolic blood pressures) to identify trauma patients at greatest risk of hemorrhage. The algorithm preprocesses the vital signs to discard unreliable data, analyzes reliable data using an artificial intelligence-based linear regression model, and stratifies hemorrhage risk into low (HRI:I), average (HRI:II), and high (HRI:III). Results: To train and test the algorithm, we used 540 h of continuous vital-sign data collected from 1,659 trauma patients in prehospital and hospital (i.e., emergency department) settings. We defined hemorrhage cases (n = 198) as those patients who received ≥1 unit of packed red blood cells within 24 h of hospital admission and had documented hemorrhagic injuries. The APPRAISE-HRI stratification yielded a hemorrhage likelihood ratio (95% confidence interval) of 0.28 (0.13-0.43) for HRI:I, 1.00 (0.85-1.15) for HRI:II, and 5.75 (3.57-7.93) for HRI:III, suggesting that patients categorized in the low-risk (high-risk) category were at least 3-fold less (more) likely to have hemorrhage than those in the average trauma population. We obtained similar results in a cross-validation analysis. Conclusions: The APPRAISE-HRI algorithm provides a new capability to evaluate routine vital signs and alert medics to specific casualties who have the highest risk of hemorrhage, to optimize decision-making for triage, treatment, and evacuation.

摘要

背景

出血仍然是战场上死亡的主要原因。本研究旨在评估人工智能分诊算法自动分析生命体征数据并对创伤患者出血风险进行分层的能力。

方法

在这里,我们开发了 APPRAISE-Hemorrhage Risk Index(HRI)算法,该算法使用三个常规测量的生命体征(心率和舒张压及收缩压)来识别出血风险最大的创伤患者。该算法预处理生命体征以丢弃不可靠的数据,使用基于人工智能的线性回归模型分析可靠数据,并将出血风险分层为低(HRI:I)、中(HRI:II)和高(HRI:III)。

结果

为了训练和测试算法,我们使用了从 1659 名创伤患者的院前和医院(即急诊室)环境中收集的 540 小时连续生命体征数据。我们将出血病例(n=198)定义为在入院后 24 小时内接受≥1 单位浓缩红细胞且有记录的出血性损伤的患者。APPRAISE-HRI 分层对 HRI:I 的出血可能性比(95%置信区间)为 0.28(0.13-0.43),对 HRI:II 的为 1.00(0.85-1.15),对 HRI:III 的为 5.75(3.57-7.93),这表明分类为低危(高危)类别的患者发生出血的可能性至少是普通创伤人群的 3 倍(更多)。我们在交叉验证分析中获得了类似的结果。

结论

APPRAISE-HRI 算法提供了一种新的能力,可以评估常规生命体征,并向医务人员发出特定伤员出血风险最高的警报,以优化分诊、治疗和疏散的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fdf/10476583/27c1ef4895ed/shock-60-199-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验