Suppr超能文献

基于多尺度图谱构建的层次图卷积网络用于利用功能连接进行脑部疾病诊断

Hierarchical Graph Convolutional Network Built by Multiscale Atlases for Brain Disorder Diagnosis Using Functional Connectivity.

作者信息

Liu Mianxin, Zhang Han, Shi Feng, Shen Dinggang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15182-15194. doi: 10.1109/TNNLS.2023.3282961. Epub 2024 Oct 29.

Abstract

Functional connectivity network (FCN) data from functional magnetic resonance imaging (fMRI) is increasingly used for the diagnosis of brain disorders. However, state-of-the-art studies used to build the FCN using a single brain parcellation atlas at a certain spatial scale, which largely neglected functional interactions across different spatial scales in hierarchical manners. In this study, we propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis. We first use a set of well-defined multiscale atlases to compute multiscale FCNs. Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling across multiple spatial scales, namely "Atlas-guided Pooling (AP)." Accordingly, we propose a multiscale-atlases-based hierarchical graph convolutional network (MAHGCN), built on the stacked layers of graph convolution and the AP, for a comprehensive extraction of diagnostic information from multiscale FCNs. Experiments on neuroimaging data from 1792 subjects demonstrate the effectiveness of our proposed method in the diagnoses of Alzheimer's disease (AD), the prodromal stage of AD [i.e., mild cognitive impairment (MCI)], as well as autism spectrum disorder (ASD), with the accuracy of 88.9%, 78.6%, and 72.7%, respectively. All results show significant advantages of our proposed method over other competing methods. This study not only demonstrates the feasibility of brain disorder diagnosis using resting-state fMRI empowered by deep learning but also highlights that the functional interactions in the multiscale brain hierarchy are worth being explored and integrated into deep learning network architectures for a better understanding of the neuropathology of brain disorders. The codes for MAHGCN are publicly available at "https://github.com/MianxinLiu/MAHGCN-code."

摘要

来自功能磁共振成像(fMRI)的功能连接网络(FCN)数据越来越多地用于脑部疾病的诊断。然而,以往的前沿研究在构建FCN时,通常在特定空间尺度上使用单一脑图谱,这在很大程度上忽略了不同空间尺度间以分层方式存在的功能交互。在本研究中,我们提出了一种新颖的框架,用于对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺度图谱来计算多尺度FCN。然后,我们利用多尺度图谱中各区域间具有生物学意义的脑分层关系,在多个空间尺度上进行节点池化,即“图谱引导池化(AP)”。在此基础上,我们提出了一种基于多尺度图谱的分层图卷积网络(MAHGCN),该网络基于图卷积层和AP的堆叠构建,用于从多尺度FCN中全面提取诊断信息。对1792名受试者的神经影像数据进行的实验表明,我们提出的方法在阿尔茨海默病(AD)、AD前驱期[即轻度认知障碍(MCI)]以及自闭症谱系障碍(ASD)的诊断中有效,准确率分别为88.9%、78.6%和72.7%。所有结果表明,我们提出的方法相对于其他竞争方法具有显著优势。本研究不仅证明了利用深度学习增强的静息态fMRI进行脑部疾病诊断的可行性,还强调了多尺度脑分层中的功能交互值得探索并整合到深度学习网络架构中,以更好地理解脑部疾病的神经病理学。MAHGCN的代码可在“https://github.com/MianxinLiu/MAHGCN-code”上公开获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验