Suppr超能文献

Munc13- 和 SNAP25 依赖性分子桥在突触囊泡引发中起关键作用。

Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming.

机构信息

Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.

Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany.

出版信息

Sci Adv. 2023 Jun 23;9(25):eadf6222. doi: 10.1126/sciadv.adf6222. Epub 2023 Jun 21.

Abstract

Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble -ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.

摘要

突触囊泡的连接、预备和神经递质的释放需要多个蛋白复合物的协调作用。虽然生理实验、相互作用数据和纯化系统的结构研究对于理解所涉及的单个复合物的功能至关重要,但它们无法解决单个复合物的作用如何整合。我们使用低温电子断层扫描技术,以其天然组成、构象和环境,在分子分辨率下同时对多个突触前蛋白复合物和脂质进行成像。我们详细的形态学特征表明,连续的突触囊泡状态先于神经递质的释放,其中由 Munc13 组成的桥将囊泡定位在距离质膜 <10 纳米的位置,而由可溶性 N-乙基马来酰亚胺敏感因子附着蛋白 25 组成的桥将囊泡定位在距离质膜 <5 纳米的位置,后者构成了分子预备状态。Munc13 的激活通过囊泡桥(连接物)支持向预备状态的转变,而蛋白激酶 C 通过减少囊泡的连接来促进相同的转变。这些发现体现了由多个分子多样化的复合物组成的扩展组装体执行的细胞功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2d/10284560/aa68c32e4eda/sciadv.adf6222-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验