Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
Nat Commun. 2023 Jun 21;14(1):3676. doi: 10.1038/s41467-023-39400-w.
Cancer progression is an evolutionary process shaped by both deterministic and stochastic forces. Multi-region and single-cell sequencing of tumors enable high-resolution reconstruction of the mutational history of each tumor and highlight the extensive diversity across tumors and patients. Resolving the interactions among mutations and recovering recurrent evolutionary processes may offer greater opportunities for successful therapeutic strategies. To this end, we present a novel probabilistic framework, called TreeMHN, for the joint inference of exclusivity patterns and recurrent trajectories from a cohort of intra-tumor phylogenetic trees. Through simulations, we show that TreeMHN outperforms existing alternatives that can only focus on one aspect of the task. By analyzing datasets of blood, lung, and breast cancers, we find the most likely evolutionary trajectories and mutational patterns, consistent with and enriching our current understanding of tumorigenesis. Moreover, TreeMHN facilitates the prediction of tumor evolution and provides probabilistic measures on the next mutational events given a tumor tree, a prerequisite for evolution-guided treatment strategies.
癌症的进展是一个由确定性和随机性力量共同塑造的进化过程。对肿瘤进行多区域和单细胞测序,可以实现对每个肿瘤的突变历史进行高分辨率重建,并突出肿瘤和患者之间的广泛多样性。解析突变之间的相互作用并恢复反复出现的进化过程,可能为成功的治疗策略提供更大的机会。为此,我们提出了一种新的概率框架,称为 TreeMHN,用于从一组肿瘤系统发育树中联合推断排他性模式和反复出现的轨迹。通过模拟,我们表明 TreeMHN 优于仅能关注任务某一方面的现有替代方案。通过分析血液、肺部和乳腺癌的数据集,我们发现了最可能的进化轨迹和突变模式,与我们目前对肿瘤发生的理解一致,并丰富了这一理解。此外,TreeMHN 还可以预测肿瘤的进化,并为给定肿瘤树的下一次突变事件提供概率度量,这是进化导向治疗策略的前提。