Aga Olav N L, Brun Morten, Dauda Kazeem A, Diaz-Uriarte Ramon, Giannakis Konstantinos, Johnston Iain G
Computational Biology Unit, University of Bergen, Bergen, Norway.
Department of Clinical Science, University of Bergen, Bergen, Norway.
PLoS Comput Biol. 2024 Sep 4;20(9):e1012393. doi: 10.1371/journal.pcbi.1012393. eCollection 2024 Sep.
Accumulation processes, where many potentially coupled features are acquired over time, occur throughout the sciences from evolutionary biology to disease progression, and particularly in the study of cancer progression. Existing methods for learning the dynamics of such systems typically assume limited (often pairwise) relationships between feature subsets, cross-sectional or untimed observations, small feature sets, or discrete orderings of events. Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and their timings. We demonstrate the capacity of HyperTraPS-CT to deal with cross-sectional, longitudinal, and phylogenetic data, which may have no, uncertain, or precisely specified sampling times. HyperTraPS-CT allows positive and negative interactions between arbitrary subsets of features (not limited to pairwise interactions), supporting Bayesian and maximum-likelihood inference approaches to identify these interactions, consequent pathways, and predictions of future and unobserved features. We also introduce a range of visualisations for the inferred outputs of these processes and demonstrate model selection and regularisation for feature interactions. We apply this approach to case studies on the accumulation of mutations in cancer progression and the acquisition of anti-microbial resistance genes in tuberculosis, demonstrating its flexibility and capacity to produce predictions aligned with applied priorities.
累积过程是指随着时间推移获得许多潜在耦合特征的过程,它贯穿于从进化生物学到疾病进展的各个科学领域,尤其是在癌症进展研究中。现有的用于学习此类系统动态的方法通常假定特征子集之间的关系有限(通常是成对关系)、采用横断面或无时间标注的观测数据、特征集较小,或者事件的排序是离散的。在此,我们引入了HyperTraPS-CT(连续时间超立方转移路径采样),以计算无限制状态空间中许多任意耦合特征的连续时间动态的后验分布,同时考虑观测数据及其时间的不确定性。我们展示了HyperTraPS-CT处理横断面、纵向和系统发育数据的能力,这些数据可能没有、具有不确定或精确指定的采样时间。HyperTraPS-CT允许特征的任意子集之间存在正相互作用和负相互作用(不限于成对相互作用),支持贝叶斯和最大似然推理方法来识别这些相互作用、后续路径以及对未来和未观测特征的预测。我们还为这些过程的推断输出引入了一系列可视化方法,并展示了特征相互作用的模型选择和正则化。我们将此方法应用于癌症进展中突变积累以及结核病中抗菌耐药基因获得的案例研究,证明了其灵活性以及做出符合应用优先级预测的能力。