Suppr超能文献

基于生物信息学分析鉴定宫颈癌组织中的关键生物标志物及相关免疫细胞浸润。

Identification of key biomarkers and related immune cell infiltration in cervical cancer tissue based on bioinformatics analysis.

机构信息

Department of Obstetrics, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Xihu District, Hangzhou, 310012, China.

出版信息

Sci Rep. 2023 Jun 21;13(1):10121. doi: 10.1038/s41598-023-37346-z.

Abstract

Cervical cancer (CC) is the most common gynecological malignant tumor. Immunotherapy has become a new model for the treatment of CC, especially advanced and recurrent cancer. At present, many studies are exploring the safety and efficacy of immunotherapy for advanced or recurrent CC. In this study, CIBERSORT was used to analyze the immune cell infiltration in CC patients, to evaluate the proportion of immune cell types in CC samples, to quantify the cell composition of the immune response, and to analyze its prognostic value. The expression profile datasets of CC were downloaded from the GEO. The differentially expressed genes (DEGs) between CC and normal cervical tissues were identified via R software (version 4.1.1), and their functions and pathways were enriched and analyzed. A protein-protein interaction network was constructed to screen the hub gene. Immune cell infiltration in CC was analyzed via scientific reverse convolution algorithm (CIBERSORT), and the hub gene was analyzed via survival analysis to screen the diagnostic biomarkers of CC. A total of 144 DEGs and 12 hub genes were identified. DEGs are mainly involved in molecular functions such as serine-peptidase activity, serine-hydrolase activity, and chemokine activity. The enrichment pathway is closely related to the interaction between viral proteins and cytokines and cytokine receptors, the interleukin 17 signaling pathway, and chemokine signaling pathway. The immune cell infiltration analysis showed that T cells were the main infiltrating immune cells in CC, especially T cells CD8+ and CD4+ . The survival analysis of the hub gene showed that CEP55, MCM2, RFC4, and RRM2 had high diagnostic value. CEP55, MCM2, RFC4, and RRM2 can be used as diagnostic markers for CC. CD8+ and CD4+ T cells are closely related to the occurrence and development of CC.

摘要

宫颈癌(CC)是最常见的妇科恶性肿瘤。免疫疗法已成为治疗 CC,尤其是晚期和复发性癌症的新模型。目前,许多研究都在探索免疫疗法治疗晚期或复发性 CC 的安全性和有效性。在本研究中,使用 CIBERSORT 分析 CC 患者的免疫细胞浸润情况,评估 CC 样本中免疫细胞类型的比例,量化免疫反应的细胞组成,并分析其预后价值。从 GEO 下载 CC 的表达谱数据集。使用 R 软件(版本 4.1.1)识别 CC 与正常宫颈组织之间的差异表达基因(DEGs),并对其功能和途径进行富集和分析。构建蛋白质-蛋白质相互作用网络以筛选关键基因。通过科学反卷积算法(CIBERSORT)分析 CC 中的免疫细胞浸润,通过生存分析分析关键基因,筛选 CC 的诊断生物标志物。共鉴定出 144 个 DEG 和 12 个关键基因。DEG 主要参与丝氨酸肽酶活性、丝氨酸水解酶活性和趋化因子活性等分子功能。富集途径与病毒蛋白和细胞因子及细胞因子受体之间的相互作用、白细胞介素 17 信号通路和趋化因子信号通路密切相关。免疫细胞浸润分析表明,T 细胞是 CC 中主要浸润的免疫细胞,尤其是 T 细胞 CD8+和 CD4+。关键基因的生存分析表明,CEP55、MCM2、RFC4 和 RRM2 具有较高的诊断价值。CEP55、MCM2、RFC4 和 RRM2 可作为 CC 的诊断标志物。CD8+和 CD4+T 细胞与 CC 的发生发展密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29ed/10284792/8ee516c8ee20/41598_2023_37346_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验