Suppr超能文献

国际机场网络中新冠病毒传播算法——DetArpds

COVID-19 spread algorithm in the international airport network-DetArpds.

作者信息

Guevara Cesar, Coronel Dennys, Salazar Maldonado Byron Eduardo, Salazar Flores Jorge Eduardo

机构信息

DataLab, The Institute of Mathematical Sciences (ICMAT-CSIC), Madrid, Spain.

Centre of Mechatronics and Interactive Systems (MIST), Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador.

出版信息

PeerJ Comput Sci. 2023 Feb 16;9:e1228. doi: 10.7717/peerj-cs.1228. eCollection 2023.

Abstract

Due to COVID-19, the spread of diseases through air transport has become an important issue for public health in countries globally. Moreover, mass transportation (such as air travel) was a fundamental reason why infections spread to all countries within weeks. In the last 2 years in this research area, many studies have applied machine learning methods to predict the spread of COVID-19 in different environments with optimal results. These studies have implemented algorithms, methods, techniques, and other statistical models to analyze the information in accuracy form. Accordingly, this study focuses on analyzing the spread of COVID-19 in the international airport network. Initially, we conducted a review of the technical literature on algorithms, techniques, and theorems for generating routes between two points, comprising an analysis of 80 scientific papers that were published in indexed journals between 2017 and 2021. Subsequently, we analyzed the international airport database and information on the spread of COVID-19 from 2020 to 2022 to develop an algorithm for determining airport routes and the prevention of disease spread (DetARPDS). The main objective of this computational algorithm is to generate the routes taken by people infected with COVID-19 who transited the international airport network. The DetARPDS algorithm uses graph theory to map the international airport network using geographic allocations to position each terminal (vertex), while the distance between terminals was calculated with the Euclidian distance. Additionally, the proposed algorithm employs the Dijkstra algorithm to generate route simulations from a starting point to a destination air terminal. The generated routes are then compared with chronological contagion information to determine whether they meet the temporality in the spread of the virus. Finally, the obtained results are presented achieving a high probability of 93.46% accuracy for determining the entire route of how the disease spreads. Above all, the results of the algorithm proposed improved different computational aspects, such as time processing and detection of airports with a high rate of infection concentration, in comparison with other similar studies shown in the literature review.

摘要

由于新冠疫情,通过航空运输传播疾病已成为全球各国公共卫生领域的一个重要问题。此外,大规模运输(如航空旅行)是感染在数周内蔓延至所有国家的一个根本原因。在该研究领域的过去两年中,许多研究应用机器学习方法来预测新冠疫情在不同环境中的传播,并取得了最佳效果。这些研究采用了算法、方法、技术及其他统计模型,以准确的形式分析信息。因此,本研究聚焦于分析新冠疫情在国际机场网络中的传播情况。首先,我们对关于两点之间生成路线的算法、技术和定理的技术文献进行了综述,其中分析了2017年至2021年期间发表在索引期刊上的80篇科学论文。随后,我们分析了2020年至2022年的国际机场数据库以及新冠疫情传播信息,以开发一种确定机场路线和预防疾病传播的算法(DetARPDS)。这种计算算法的主要目标是生成感染新冠病毒的人员在国际机场网络中转时所走的路线。DetARPDS算法利用图论,通过地理定位来绘制国际机场网络,以确定每个航站楼(顶点)的位置,而航站楼之间的距离则用欧几里得距离计算。此外,该算法采用迪杰斯特拉算法从起点到目的地航空航站楼生成路线模拟。然后将生成的路线与按时间顺序排列的传染信息进行比较,以确定它们是否符合病毒传播的时间性。最后,给出的结果表明确定疾病传播的完整路线的准确率高达93.46%。最重要的是,与文献综述中所示的其他类似研究相比,所提出算法的结果在不同的计算方面有所改进,如时间处理和高感染集中率机场的检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/665b/10280396/8acc9dbfb770/peerj-cs-09-1228-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验