文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过机器学习技术分析新冠疫情封锁对空气质量的影响。

Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques.

作者信息

Zukaib Umer, Maray Mohammed, Mustafa Saad, Haq Nuhman Ul, Khan Atta Ur Rehman, Rehman Faisal

机构信息

Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KP, Pakistan.

Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan, China.

出版信息

PeerJ Comput Sci. 2023 Mar 31;9:e1270. doi: 10.7717/peerj-cs.1270. eCollection 2023.


DOI:10.7717/peerj-cs.1270
PMID:37346587
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10280446/
Abstract

After February 2020, the majority of the world's governments decided to implement a lockdown in order to limit the spread of the deadly COVID-19 virus. This restriction improved air quality by reducing emissions of particular atmospheric pollutants from industrial and vehicular traffic. In this study, we look at how the COVID-19 shutdown influenced the air quality in Lahore, Pakistan. HAC Agri Limited, Dawn Food Head Office, Phase 8-DHA, and Zeenat Block in Lahore were chosen to give historical data on the concentrations of many pollutants, including PM2.5, PM10 (particulate matter), NO2 (nitrogen dioxide), and O3 (ozone). We use a variety of models, including decision tree, SVR, random forest, ARIMA, CNN, N-BEATS, and LSTM, to compare and forecast air quality. Using machine learning methods, we looked at how each pollutant's levels changed during the lockdown. It has been shown that LSTM estimates the amounts of each pollutant during the lockout more precisely than other models. The results show that during the lockdown, the concentration of atmospheric pollutants decreased, and the air quality index improved by around 20%. The results also show a 42% drop in PM2.5 concentration, a 72% drop in PM10 concentration, a 29% drop in NO2 concentration, and an increase of 20% in O3 concentration. The machine learning models are assessed using the RMSE, MAE, and R-SQUARE values. The LSTM measures NO2 at 4.35%, O3 at 8.2%, PM2.5 at 4.46%, and PM10 at 8.58% in terms of MAE. It is observed that the LSTM model outperformed with the fewest errors when the projected values are compared with the actual values.

摘要

2020年2月之后,世界上大多数政府决定实施封锁措施,以限制致命的新冠病毒传播。这种限制措施通过减少工业和车辆交通排放的特定大气污染物,改善了空气质量。在本研究中,我们考察了新冠疫情封锁措施对巴基斯坦拉合尔空气质量的影响。选择拉合尔的HAC农业有限公司、黎明食品总部、DHA第8期以及泽纳特街区,以提供包括PM2.5、PM10(颗粒物)、NO2(二氧化氮)和O3(臭氧)等多种污染物浓度的历史数据。我们使用多种模型,包括决策树、支持向量回归、随机森林、自回归整合移动平均模型、卷积神经网络、N-BEATS和长短期记忆网络,来比较和预测空气质量。利用机器学习方法,我们研究了封锁期间每种污染物水平的变化情况。结果表明,长短期记忆网络模型比其他模型更精确地估计了封锁期间每种污染物的含量。结果显示,在封锁期间,大气污染物浓度下降,空气质量指数提高了约20%。结果还显示,PM2.5浓度下降了42%,PM10浓度下降了72%,NO2浓度下降了29%,O3浓度增加了20%。使用均方根误差、平均绝对误差和决定系数值对机器学习模型进行评估。就平均绝对误差而言,长短期记忆网络模型对NO2的测量误差为4.35%,对O3的测量误差为8.2%,对PM2.5的测量误差为4.46%,对PM10的测量误差为8.58%。可以观察到,当将预测值与实际值进行比较时,长短期记忆网络模型的误差最小,表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/71aae237c74f/peerj-cs-09-1270-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/71a42160a4a1/peerj-cs-09-1270-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/f6faeb5146fa/peerj-cs-09-1270-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/6cbb4f2751e8/peerj-cs-09-1270-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/bbae82479501/peerj-cs-09-1270-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/97d6a0d61fa7/peerj-cs-09-1270-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/2d20f2976d36/peerj-cs-09-1270-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/873510ff6416/peerj-cs-09-1270-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/aa7957238979/peerj-cs-09-1270-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/473c2ed91936/peerj-cs-09-1270-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/a3a1afc91a76/peerj-cs-09-1270-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/71aae237c74f/peerj-cs-09-1270-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/71a42160a4a1/peerj-cs-09-1270-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/f6faeb5146fa/peerj-cs-09-1270-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/6cbb4f2751e8/peerj-cs-09-1270-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/bbae82479501/peerj-cs-09-1270-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/97d6a0d61fa7/peerj-cs-09-1270-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/2d20f2976d36/peerj-cs-09-1270-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/873510ff6416/peerj-cs-09-1270-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/aa7957238979/peerj-cs-09-1270-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/473c2ed91936/peerj-cs-09-1270-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/a3a1afc91a76/peerj-cs-09-1270-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebd4/10280446/71aae237c74f/peerj-cs-09-1270-g011.jpg

相似文献

[1]
Impact of COVID-19 lockdown on air quality analyzed through machine learning techniques.

PeerJ Comput Sci. 2023-3-31

[2]
Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality.

Environ Chem Lett. 2020

[3]
[Impacts of Emission and Meteorological Conditions on Air Pollutants at Various Sites Around the COVID-19 Lockdown in Wuhan].

Huan Jing Ke Xue. 2023-2-8

[4]
A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.

Environ Int. 2021-12

[5]
The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

Res Rep Health Eff Inst. 2011-4

[6]
Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning.

Environ Pollut. 2021-4-1

[7]
Prediction and assessment of the impact of COVID-19 lockdown on air quality over Kolkata: a deep transfer learning approach.

Environ Monit Assess. 2022-12-22

[8]
Unprecedented reduction in air pollution and corresponding short-term premature mortality associated with COVID-19 lockdown in Delhi, India.

J Air Waste Manag Assoc. 2021-9

[9]
Effects of the COVID-19 Lockdown on Air Pollutant Levels and Associated Reductions in Ischemic Stroke Incidence in Shandong Province, China.

Front Public Health. 2022

[10]
The effectiveness of traffic and production restrictions on urban air quality: A rare opportunity for investigation.

J Air Waste Manag Assoc. 2023-3

本文引用的文献

[1]
Particle composition, sources and evolution during the COVID-19 lockdown period in Chengdu, southwest China: Insights from single particle aerosol mass spectrometer data.

Atmos Environ (1994). 2022-1-1

[2]
Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19.

Chemosphere. 2022-2

[3]
Evaluating the Dynamics of Bluetooth Low Energy Based COVID-19 Risk Estimation for Educational Institutes.

Sensors (Basel). 2021-10-7

[4]
Household response to an extreme shock: Evidence on the immediate impact of the Covid-19 lockdown on economic outcomes and well-being in rural Uganda.

World Dev. 2021-4

[5]
Air quality change during the COVID-19 pandemic lockdown over the Auvergne-Rhône-Alpes region, France.

Air Qual Atmos Health. 2021

[6]
Pragmatic Recommendations for Infection Prevention and Control Practices for Healthcare Facilities in Low- and Middle-Income Countries during the COVID-19 Pandemic.

Am J Trop Med Hyg. 2021-1-6

[7]
Improved ANFIS model for forecasting Wuhan City Air Quality and analysis COVID-19 lockdown impacts on air quality.

Environ Res. 2021-3

[8]
COVID-19 and air pollution and meteorology-an intricate relationship: A review.

Chemosphere. 2020-9-14

[9]
Air pollution episodes during the COVID-19 outbreak in the Beijing-Tianjin-Hebei region of China: An insight into the transport pathways and source distribution.

Environ Pollut. 2020-12

[10]
Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19.

Sci Adv. 2020-7-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索