Suppr超能文献

[人工智能在辐射防护中的机遇:提高诊断成像安全性]

[Opportunities for artificial intelligence in radiation protection : Improving safety of diagnostic imaging].

作者信息

Pashazadeh Ali, Hoeschen Christoph

机构信息

Institut für Medizintechnik (IMT), Otto-von-Guericke-Universität Magdeburg, Otto-Hahn-Str. 2, 39016, Magdeburg, Deutschland.

出版信息

Radiologie (Heidelb). 2023 Jul;63(7):530-538. doi: 10.1007/s00117-023-01167-y. Epub 2023 Jun 22.

Abstract

CLINICAL/METHODOLOGICAL ISSUE: Imaging of structures of internal organs often requires ionizing radiation, which is a health risk. Reducing the radiation dose can increase the image noise, which means that images provide less information.

STANDARD RADIOLOGICAL METHODS

This problem is observed in commonly used medical imaging modalities such as computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), angiography, fluoroscopy, and any modality that uses ionizing radiation for imaging.

METHODOLOGICAL INNOVATIONS

Artificial intelligence (AI) can improve the quality of low-dose images and help minimize radiation exposure. Potential applications are explored, and frameworks and procedures are critically evaluated.

PERFORMANCE

The performance of AI models varies. High-performance models could be used in clinical settings in the near future. Several challenges (e.g., quantitative accuracy, insufficient training data) must be addressed for optimal performance and widespread adoption of this technology in the field of medical imaging.

PRACTICAL RECOMMENDATIONS

To fully realize the potential of AI and deep learning (DL) in medical imaging, research and development must be intensified. In particular, quality control of AI models must be ensured, and training and testing data must be uncorrelated and quality assured. With sufficient scientific validation and rigorous quality management, AI could contribute to the safe use of low-dose techniques in medical imaging.

摘要

临床/方法学问题:对内部器官结构进行成像通常需要电离辐射,这存在健康风险。降低辐射剂量会增加图像噪声,这意味着图像提供的信息更少。

标准放射学方法

在常用的医学成像模态中都存在这个问题,如计算机断层扫描(CT)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)、血管造影、荧光透视,以及任何使用电离辐射进行成像的模态。

方法学创新

人工智能(AI)可以提高低剂量图像的质量,并有助于将辐射暴露降至最低。探讨了潜在应用,并对框架和程序进行了批判性评估。

性能

AI模型的性能各不相同。高性能模型在不久的将来可用于临床环境。为了在医学成像领域实现该技术的最佳性能和广泛应用,必须解决几个挑战(例如,定量准确性、训练数据不足)。

实际建议

为了充分实现AI和深度学习(DL)在医学成像中的潜力,必须加强研发。特别是,必须确保AI模型的质量控制,并且训练和测试数据必须不相关且质量有保证。经过充分的科学验证和严格的质量管理,AI可以有助于医学成像中低剂量技术的安全使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64da/10299955/44a3fef87a57/117_2023_1167_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验