MEMS, Microfluidics and Nano electronics Laboratory, Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India.
Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai, United Arab Emirates.
Int J Biol Macromol. 2023 Aug 1;245:125502. doi: 10.1016/j.ijbiomac.2023.125502. Epub 2023 Jun 20.
Futuristic microfluidics will require alternative ways to extend its potential in vast areas by integrating various facets such as automation of different subsystems, multiplexing, incorporation of cyber-physical capabilities, and rapid prototyping. On the rapid prototyping aspect, for the last decade, additive manufacturing (AM) or 3D printing (3DP) has advanced to become an alternative fabrication process for microfluidic devices, enabling industry-level abilities towards mass production. In this context, for the first time, this work demonstrates the fabrication of monolithic multilayer microfluidic devices (MMMD) from planar orientation (1 layer) to nonplanar (4 layers) monolithic microchannels. The developed MMM device was impeccable for synthesizing highly potentialized silver nanoparticles (AgNPs) in <1 s. Moreover, the transport of chemical species with laminar flow simulations was performed on the process along with the thorough characterizations of produced AgNPs, finding the mean AgNPs particle size of around 35 nm without any post-processing requirements. The well-known catalytic activity of AgNPs was leveraged to enhance weak chemiluminescence (CL) sensing signals by >1300 %, increasing CL sensitivity. Further, machine learning (ML) predictive models encouraged to obtain the experimental parameters without human intervention iterations for target-specific applications. The proposed methodology finds the potential to save resources, time, and enables automation with rapid prototyping, providing possibilities for mass fabrications.
未来的微流控技术需要通过集成各种方面,如不同子系统的自动化、多路复用、纳入网络物理功能和快速原型制作,来寻找扩展其在广泛领域潜力的替代方法。在快速原型制作方面,在过去的十年中,增材制造(AM)或 3D 打印(3DP)已经发展成为微流控器件的替代制造工艺,使行业能够实现大规模生产的能力。在这种情况下,这是首次从平面方向(1 层)到非平面(4 层)整体式微通道展示整体式多层微流控器件(MMMD)的制造。所开发的 MMMD 设备可在不到 1 秒的时间内完美合成高潜力的银纳米粒子(AgNP)。此外,还对该工艺进行了层流流动模拟的化学物质传输,以及对所生产的 AgNP 进行了全面的特性分析,发现 AgNP 的平均粒径约为 35nm,无需任何后处理要求。AgNP 的众所周知的催化活性被利用来增强弱化学发光(CL)传感信号,提高 CL 灵敏度达>1300%。此外,机器学习(ML)预测模型鼓励在无需人为干预迭代的情况下获取针对特定应用的实验参数。所提出的方法具有节省资源、时间和实现自动化快速原型制作的潜力,为大规模制造提供了可能性。