Suppr超能文献

掺杂金属银纳米颗粒的3D打印介孔生物活性玻璃支架的抗菌效果

Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles.

作者信息

Sánchez-Salcedo Sandra, García Ana, González-Jiménez Adela, Vallet-Regí María

机构信息

Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.

Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.

出版信息

Acta Biomater. 2023 Jan 1;155:654-666. doi: 10.1016/j.actbio.2022.10.045. Epub 2022 Nov 1.

Abstract

The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO, CaO and PO system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.

摘要

具有高生物活性和抗菌性能的用于骨组织再生的新型生物材料的研发正在深入研究中。我们合成了由介孔生物活性玻璃(MBG)在三元SiO、CaO和PO体系中形成的纳米复合材料,该体系掺杂有均匀嵌入MBG基质中的金属银纳米颗粒(AgNP)。Ag/MBG纳米复合材料已直接合成,并且在MBG合成的最后一步通过高温(700°C)银物种自发还原为金属AgNP。制备了具有均匀互连的超微孔、大孔和介孔的含银三维介孔生物活性玻璃支架。制造方法包括在介孔结构导向剂(P123)存在下的单步溶胶 - 凝胶路线与生物大分子聚合物如(羟丙基)甲基纤维素(HPMC)作为宏观结构模板的组合,随后采用快速成型(RP)技术。通过MC3T3 - E1前成骨细胞培养试验和细菌(大肠杆菌和金黄色葡萄球菌)检测评估了Ag/MBG纳米复合材料的生物学特性。结果表明,当银的含量增加时,MC3T3 - E1细胞的形态未受影响,但前成骨细胞增殖减少。抗菌检测表明,细菌生长抑制和生物膜破坏与MBG基质中AgNP含量的增加成正比。此外,MC3T3 - E1细胞与金黄色葡萄球菌的体外共培养证实,AgNP的存在是抗菌活性所必需的,并且AgNP对细胞增殖参数有轻微影响。因此,具有分级孔隙结构和高抗菌能力的3D打印支架在骨组织再生中具有潜在应用价值。重要性声明:本研究结合了骨组织工程的三个关键科学方面:(i)具有高生物活性以修复和再生骨组织的材料,(ii)含有抗菌剂以降低感染风险,(iii)呈具有分级孔隙率的三维支架形式。这里描述了创新方法:溶胶 - 凝胶法,用于获得掺杂有金属银纳米颗粒的介孔生物活性玻璃基质,其中不同的聚合物模板促进不同尺寸尺度的存在;以及快速成型技术,根据计算机辅助设计提供超大孔隙率。所获得的双支架具有生物相容性,并能释放有效剂量的银以对抗骨感染,骨感染是与骨疾病和骨折手术治疗相关的最严重并发症之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验