文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用变分自编码器对高度多重组织图像进行形态感知分析

Morphology-Aware Profiling of Highly Multiplexed Tissue Images using Variational Autoencoders.

作者信息

Baker Gregory J, Novikov Edward, Coy Shannon, Chen Yu-An, Hug Clemens B, Ahmed Zergham, Cajas Ordóñez Sebastián A, Huang Siyu, Yapp Clarence, Sokolov Artem, Pfister Hanspeter, Santagata Sandro, Sorger Peter K

机构信息

Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA.

Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA.

出版信息

bioRxiv. 2025 Jun 27:2025.06.23.661064. doi: 10.1101/2025.06.23.661064.


DOI:10.1101/2025.06.23.661064
PMID:40667089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12262432/
Abstract

Spatial proteomics (highly multiplexed tissue imaging) provides unprecedented insight into the types, states, and spatial organization of cells within preserved tissue environments. To enable single-cell analysis, high-plex images are typically segmented using algorithms that assign marker signals to individual cells. However, conventional segmentation is often imprecise and susceptible to signal spillover between adjacent cells, interfering with accurate cell type identification. Segmentation-based methods also fail to capture the morphological detail that histopathologists rely on for disease diagnosis and staging. Here, we present a method that combines unsupervised, pixel-level machine learning using autoencoders with traditional segmentation to generate single-cell data that captures information on protein abundance, morphology, and local neighborhood in a manner analogous to human experts while overcoming the problem of signal spillover. The result is a more accurate and nuanced characterization of cell types and states than segmentation-based analysis alone.

摘要

空间蛋白质组学(高度多重组织成像)为保存的组织环境中细胞的类型、状态和空间组织提供了前所未有的见解。为了实现单细胞分析,高多重图像通常使用将标记信号分配给单个细胞的算法进行分割。然而,传统的分割往往不准确,并且容易受到相邻细胞之间信号溢出的影响,干扰准确的细胞类型识别。基于分割的方法也无法捕捉组织病理学家用于疾病诊断和分期的形态学细节。在这里,我们提出了一种方法,该方法将使用自动编码器的无监督像素级机器学习与传统分割相结合,以生成单细胞数据,该数据以类似于人类专家的方式捕获有关蛋白质丰度、形态和局部邻域的信息,同时克服信号溢出问题。与仅基于分割的分析相比,结果是对细胞类型和状态进行更准确、更细致入微的表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/7849c30c7288/nihpp-2025.06.23.661064v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/5a6b8772691e/nihpp-2025.06.23.661064v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/cd0356e277bf/nihpp-2025.06.23.661064v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/07cd4ef33e29/nihpp-2025.06.23.661064v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/f4229aee4c20/nihpp-2025.06.23.661064v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/55fe0d83690e/nihpp-2025.06.23.661064v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/50a34b694f81/nihpp-2025.06.23.661064v1-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/64c1242832af/nihpp-2025.06.23.661064v1-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/3d324e3548e0/nihpp-2025.06.23.661064v1-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/1661470691bb/nihpp-2025.06.23.661064v1-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/c33db50ac725/nihpp-2025.06.23.661064v1-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/b209e149ef0b/nihpp-2025.06.23.661064v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/5db1be243f3c/nihpp-2025.06.23.661064v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/c80eae90e529/nihpp-2025.06.23.661064v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/1480614eaa7d/nihpp-2025.06.23.661064v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/53f3018a2c46/nihpp-2025.06.23.661064v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/7849c30c7288/nihpp-2025.06.23.661064v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/5a6b8772691e/nihpp-2025.06.23.661064v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/cd0356e277bf/nihpp-2025.06.23.661064v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/07cd4ef33e29/nihpp-2025.06.23.661064v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/f4229aee4c20/nihpp-2025.06.23.661064v1-f0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/55fe0d83690e/nihpp-2025.06.23.661064v1-f0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/50a34b694f81/nihpp-2025.06.23.661064v1-f0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/64c1242832af/nihpp-2025.06.23.661064v1-f0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/3d324e3548e0/nihpp-2025.06.23.661064v1-f0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/1661470691bb/nihpp-2025.06.23.661064v1-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/c33db50ac725/nihpp-2025.06.23.661064v1-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/b209e149ef0b/nihpp-2025.06.23.661064v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/5db1be243f3c/nihpp-2025.06.23.661064v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/c80eae90e529/nihpp-2025.06.23.661064v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/1480614eaa7d/nihpp-2025.06.23.661064v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/53f3018a2c46/nihpp-2025.06.23.661064v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/12262432/7849c30c7288/nihpp-2025.06.23.661064v1-f0006.jpg

相似文献

[1]
Morphology-Aware Profiling of Highly Multiplexed Tissue Images using Variational Autoencoders.

bioRxiv. 2025-6-27

[2]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[3]
Validation of an organ mapping antibody panel for cyclical immunofluorescence microscopy on normal human kidneys.

Am J Physiol Renal Physiol. 2024-7-1

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[6]
Disentangled global and local features of multi-source data variational autoencoder: An interpretable model for diagnosing IgAN via multi-source Raman spectral fusion techniques.

Artif Intell Med. 2025-2

[7]
Comparison of hypospadias phenotype pixel segmentation to GMS score.

J Pediatr Urol. 2024-8

[8]
Sexual Harassment and Prevention Training

2025-1

[9]
Stain-Free Approach to Determine and Monitor Cell Heath Using Supervised and Unsupervised Image-Based Deep Learning.

J Pharm Sci. 2024-8

[10]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

本文引用的文献

[1]
CellLENS enables cross-domain information fusion for enhanced cell population delineation in single-cell spatial omics data.

Nat Immunol. 2025-5-22

[2]
Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data.

Nat Biomed Eng. 2025-3

[3]
Method of the Year 2024: spatial proteomics.

Nat Methods. 2024-12

[4]
Quality control for single-cell analysis of high-plex tissue profiles using CyLinter.

Nat Methods. 2024-12

[5]
What cannot be seen correctly in 2D visualizations of single-cell 'omics data?

Cell Syst. 2023-9-20

[6]
Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering.

Nat Commun. 2023-8-1

[7]
CellSighter: a neural network to classify cells in highly multiplexed images.

Nat Commun. 2023-7-18

[8]
High-plex immunofluorescence imaging and traditional histology of the same tissue section for discovering image-based biomarkers.

Nat Cancer. 2023-7

[9]
Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps.

Nat Methods. 2023-7

[10]
Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer.

Cell. 2023-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索