Suppr超能文献

基于心电图的机器学习在长QT综合征中的诊断价值:一项系统评价和荟萃分析。

The diagnostic value of electrocardiogram-based machine learning in long QT syndrome: a systematic review and meta-analysis.

作者信息

Wu Min-Juan, Wang Wen-Qin, Zhang Wei, Li Jun-Hua, Zhang Xing-Wei

机构信息

School of Nursing, Hangzhou Medical College, Hangzhou, China.

School of Public Health, Hangzhou Normal University, Hangzhou, China.

出版信息

Front Cardiovasc Med. 2023 Jun 7;10:1172451. doi: 10.3389/fcvm.2023.1172451. eCollection 2023.

Abstract

INTRODUCTION

To perform a meta-analysis to discover the performance of ML algorithms in identifying Congenital long QT syndrome (LQTS).

METHODS

The searched databases included Cochrane, EMBASE, Web of Science, and PubMed. Our study considered all English-language studies that reported the detection of LQTS using ML algorithms. Quality was assessed using QUADAS-2 and QUADAS-AI tools. The bivariate mixed effects models were used in our study. Based on genotype data for LQTS, we performed a subgroup analysis.

RESULTS

Out of 536 studies, 8 met all inclusion criteria. The pooled area under the receiving operating curve (SAUROC) for detecting LQTS was 0.95 (95% CI: 0.31-1.00); sensitivity was 0.87 (95% CI: 0.83-0.90), and specificity was 0.91 (95% CI: 0.88-0.93). Additionally, diagnostic odd ratio (DOR) was 65 (95% CI: 39-109). The positive likelihood ratio (PLR) was 9.3 (95% CI: 7.0-12.3) and the negative likelihood ratio (NLR) was 0.14 (95% CI: 0.11-0.20), with very low heterogeneity (= 16%).

DISCUSSION

We found that machine learning can be used to detect features of rare cardiovascular disease like LQTS, thus increasing our understanding of intelligent interpretation of ECG. To improve ML performance in the classification of LQTS subtypes, further research is required.

SYSTEMATIC REVIEW REGISTRATION

identifier PROSPERO CRD42022360122.

摘要

引言

进行一项荟萃分析,以发现机器学习(ML)算法在识别先天性长QT综合征(LQTS)方面的性能。

方法

检索的数据库包括Cochrane、EMBASE、科学网和PubMed。我们的研究纳入了所有使用ML算法报告LQTS检测情况的英文研究。使用QUADAS - 2和QUADAS - AI工具评估质量。我们的研究采用双变量混合效应模型。基于LQTS的基因型数据,我们进行了亚组分析。

结果

在536项研究中,8项符合所有纳入标准。检测LQTS的合并受试者工作特征曲线下面积(SAUROC)为0.95(95%置信区间:0.31 - 1.00);敏感性为0.87(95%置信区间:0.83 - 0.90),特异性为0.91(95%置信区间:0.88 - 0.93)。此外,诊断比值比(DOR)为65(95%置信区间:39 - 109)。阳性似然比(PLR)为9.3(95%置信区间:7.0 - 12.3),阴性似然比(NLR)为0.14(95%置信区间:0.11 - 0.20),异质性非常低(= 16%)。

讨论

我们发现机器学习可用于检测LQTS等罕见心血管疾病的特征,从而加深我们对心电图智能解读的理解。为提高ML在LQTS亚型分类中的性能,还需要进一步研究。

系统评价注册

标识符PROSPERO CRD42022360122。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b19d/10282180/1acfa800ad02/fcvm-10-1172451-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验