文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Transcriptome profiling of flax plants exposed to a low-frequency alternating electromagnetic field.

作者信息

Kostyn Kamil, Boba Aleksandra, Kozak Bartosz, Sztafrowski Dariusz, Widuła Jan, Szopa Jan, Preisner Marta

机构信息

Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.

Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.

出版信息

Front Genet. 2023 Jun 7;14:1205469. doi: 10.3389/fgene.2023.1205469. eCollection 2023.


DOI:10.3389/fgene.2023.1205469
PMID:37351344
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10282948/
Abstract

All living organisms on Earth evolved in the presence of an electromagnetic field (EMF), adapted to the environment of EMF, and even learned to utilize it for their purposes. However, during the last century, the Earth's core lost its exclusivity, and many EMF sources appeared due to the development of electricity and electronics. Previous research suggested that the EMF led to changes in intercellular free radical homeostasis and further altered the expression of genes involved in plant response to environmental stresses, inorganic ion transport, and cell wall constituent biosynthesis. Later, CTCT sequence motifs in gene promoters were proposed to be responsible for the response to EMF. How these motifs or different mechanisms are involved in the plant reaction to external EMF remains unknown. Moreover, as many genes activated under EMF treatment do not have the CTCT repeats in their promoters, we aimed to determine the transcription profile of a plant exposed to an EMF and identify the genes that are directly involved in response to the treatment to find the common denominator of the observed changes in the plant transcriptome.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/797268be0774/fgene-14-1205469-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/c63ba57787ad/fgene-14-1205469-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/b519abe05021/fgene-14-1205469-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/b3f2162fa328/fgene-14-1205469-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/9b301e1a6a63/fgene-14-1205469-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/aca601f07c4e/fgene-14-1205469-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/92a200aa2b0c/fgene-14-1205469-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/0c3611d4e814/fgene-14-1205469-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/4433bd8b7310/fgene-14-1205469-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/c81160a3f37b/fgene-14-1205469-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/3dc99a83baba/fgene-14-1205469-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/797268be0774/fgene-14-1205469-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/c63ba57787ad/fgene-14-1205469-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/b519abe05021/fgene-14-1205469-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/b3f2162fa328/fgene-14-1205469-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/9b301e1a6a63/fgene-14-1205469-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/aca601f07c4e/fgene-14-1205469-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/92a200aa2b0c/fgene-14-1205469-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/0c3611d4e814/fgene-14-1205469-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/4433bd8b7310/fgene-14-1205469-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/c81160a3f37b/fgene-14-1205469-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/3dc99a83baba/fgene-14-1205469-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc0/10282948/797268be0774/fgene-14-1205469-g011.jpg

相似文献

[1]
Transcriptome profiling of flax plants exposed to a low-frequency alternating electromagnetic field.

Front Genet. 2023-6-7

[2]
Impacts of Radio-Frequency Electromagnetic Field (RF-EMF) on Lettuce ()-Evidence for RF-EMF Interference with Plant Stress Responses.

Plants (Basel). 2023-2-28

[3]
Erratum: Transcriptome profiling of flax plants exposed to a low-frequency alternating electromagnetic field.

Front Genet. 2023-7-6

[4]
Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation.

J Cell Biochem. 2004-9-1

[5]
Immune response of mollusk Onchidium struma to extremely low-frequency electromagnetic fields (ELF-EMF, 50 Hz) exposure based on immune-related enzyme activity and De novo transcriptome analysis.

Fish Shellfish Immunol. 2020-1-31

[6]
Exposure to a 900 MHz electromagnetic field induces a response of the honey bee organism on the level of enzyme activity and the expression of stress-related genes.

PLoS One. 2023

[7]
Electromagnetic Field Seems to Not Influence Transcription via CTCT Motif in Three Plant Promoters.

Front Plant Sci. 2017-3-7

[8]
Lipidomic alteration and stress-defense mechanism of soil nematode Caenorhabditis elegans in response to extremely low-frequency electromagnetic field exposure.

Ecotoxicol Environ Saf. 2018-12-19

[9]
Exposure to the electromagnetic field alters the transcriptomic profile in the porcine endometrium during the peri-implantation period.

J Physiol Pharmacol. 2021-12

[10]
Global gene expression changes reflecting pleiotropic effects of Irpex lacteus induced by low--intensity electromagnetic field.

Bioelectromagnetics. 2019-2

引用本文的文献

[1]
Transcriptome map and genome annotation of flax line 3896.

Front Plant Sci. 2025-5-16

[2]
Key , , and Genes Involved in the Fatty Acid Synthesis in Flax Identified Based on Genomic and Transcriptomic Data.

Int J Mol Sci. 2023-10-4

本文引用的文献

[1]
The Effect of an Extremely Low-Frequency Electromagnetic Field on the Drought Sensitivity of Wheat Plants.

Plants (Basel). 2023-2-13

[2]
The Key Roles of ROS and RNS as a Signaling Molecule in Plant-Microbe Interactions.

Antioxidants (Basel). 2023-1-25

[3]
Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach.

Front Public Health. 2022

[4]
Phylogenomic analysis of phenylalanine ammonia-lyase (PAL) multigene family and their differential expression analysis in wheat ( L.) suggested their roles during different stress responses.

Front Plant Sci. 2022-9-30

[5]
Influence of Schumann Range Electromagnetic Fields on Components of Plant Redox Metabolism in Wheat and Peas.

Plants (Basel). 2022-7-27

[6]
Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects.

Int J Mol Sci. 2021-9-17

[7]
Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid .

Front Plant Sci. 2021-8-13

[8]
You Want it Sweeter: How Glycosylation Affects Plant Response to Oxidative Stress.

Front Plant Sci. 2020-9-16

[9]
Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.

Chemosphere. 2020-3-14

[10]
DNA Methylation Profile of and Genes in Flax Shows Specificity Towards Strains Differing in Pathogenicity.

Microorganisms. 2019-11-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索