Suppr超能文献

制定并验证列线图预测骨肉瘤患者长期癌症特异性生存的模型。

Development and validation of a nomogram to predict long-term cancer-specific survival for patients with osteosarcoma.

机构信息

Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, 450000, Henan, China.

Department of Joint Surgery, Zhengzhou Orthopaedics Hospital, Zhengzhou, 450000, Henan, China.

出版信息

Sci Rep. 2023 Jun 23;13(1):10230. doi: 10.1038/s41598-023-37391-8.

Abstract

The present work aimed to establish a new model to accurately estimate overall survival (OS) as well as cancer-specific survival (CSS) of osteosarcoma. Osteosarcoma cases were collected from the Surveillance, Epidemiology, and End Results (SEER) database between 2004 and 2017 and randomized as training or validation sets. Then, the OS- and CSS-related variables were discovered through multivariate Cox regression analysis to develop new nomograms to predict the 1-, 3- and 5-year OS and CSS. Besides, consistency index (C-index), decision curve analysis (DCA), along with calibration curve were adopted for assessing the predicting ability of our constructed nomograms after calibrating for 1-, 3- and 5-year OS and CSS. Altogether, 1727 osteosarcoma cases were enrolled in the present study and randomly divided as training (n = 1149, 70%) or validation (n = 576, 30%) set. As shown by univariate as well as multivariate Cox regression analyses, age, grade, T stage, M stage, surgery, chemotherapy, and histological type were identified to be the adverse factors to independently predict OS and CSS among the osteosarcoma cases. Besides, based on results of multivariate Cox regression analysis, we constructed the OS and CSS prediction nomograms. The C-index in training set was 0.806 (95% CI 0.769-0.836) for OS nomogram and 0.807 (95% CI 0.769-0.836) for CSS nomogram. In the meantime, C-index value in validation set was 0.818 (95% CI 0.789-0.847) for OS nomogram, while 0.804 (95% CI 0.773-0.835) for CSS nomogram. Besides, those calibration curves regarding the 3- and 5-year CSS of our constructed nomogram were highly consistent between the predicted values and the measurements in the training set as well as the external validation set. Our constructed nomogram outperformed the TNM stage in prediction. Our constructed nomogram is facile, creditable, and feasible; it efficiently predicts OS and CSS for osteosarcoma cases and can assist clinicians in assessing the prognosis for individuals and making decisions.

摘要

本研究旨在建立一种新的模型,以准确估计骨肉瘤的总生存期(OS)和癌症特异性生存期(CSS)。从 2004 年至 2017 年,从监测、流行病学和最终结果(SEER)数据库中收集骨肉瘤病例,并将其随机分为训练集或验证集。然后,通过多变量 Cox 回归分析发现与 OS 和 CSS 相关的变量,以开发新的列线图来预测 1、3 和 5 年的 OS 和 CSS。此外,采用一致性指数(C-index)、决策曲线分析(DCA)和校准曲线来评估构建的列线图在预测 1、3 和 5 年 OS 和 CSS 后的预测能力。共有 1727 例骨肉瘤患者纳入本研究,并随机分为训练集(n=1149,70%)或验证集(n=576,30%)。单因素和多因素 Cox 回归分析显示,年龄、分级、T 分期、M 分期、手术、化疗和组织学类型是骨肉瘤患者 OS 和 CSS 的独立预测因素。此外,基于多因素 Cox 回归分析的结果,我们构建了 OS 和 CSS 预测列线图。训练集中 OS 列线图的 C-index 为 0.806(95%CI 0.769-0.836),CSS 列线图的 C-index 为 0.807(95%CI 0.769-0.836)。同时,验证集中 OS 列线图的 C-index 值为 0.818(95%CI 0.789-0.847),CSS 列线图的 C-index 值为 0.804(95%CI 0.773-0.835)。此外,在训练集和外部验证集中,我们构建的列线图关于 3 年和 5 年 CSS 的校准曲线在预测值和测量值之间具有高度一致性。与 TNM 分期相比,我们构建的列线图具有更好的预测性能。我们构建的列线图简单、可信且可行,能够有效地预测骨肉瘤患者的 OS 和 CSS,并帮助临床医生评估个体的预后并做出决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c882/10290059/ddfa98e279a4/41598_2023_37391_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验