Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
J Mol Biol. 2023 Jul 15;435(14):168060. doi: 10.1016/j.jmb.2023.168060. Epub 2023 Mar 24.
In 2019, we released Missense3D which identifies stereochemical features that are disrupted by a missense variant, such as introducing a buried charge. Missense3D analyses the effect of a missense variant on a single structure and thus may fail to identify as damaging surface variants disrupting a protein interface i.e., a protein-protein interaction (PPI) site. Here we present Missense3D-PPI designed to predict missense variants at PPI interfaces. Our development dataset comprised of 1,279 missense variants (pathogenic n = 733, benign n = 546) in 434 proteins and 545 experimental structures of PPI complexes. Benchmarking of Missense3D-PPI was performed after dividing the dataset in training (320 benign and 320 pathogenic variants) and testing (226 benign and 413 pathogenic). Structural features affecting PPI, such as disruption of interchain bonds and introduction of unbalanced charged interface residues, were analysed to assess the impact of the variant at PPI. The performance of Missense3D-PPI was superior to that of Missense3D: sensitivity 44 % versus 8% and accuracy 58% versus 40%, p = 4.23 × 10. However, the specificity of Missense3D-PPI was lower compared to Missense3D (84% versus 98%). On our dataset, Missense3D-PPI's accuracy was superior to BeAtMuSiC (p = 3.4 × 10), mCSM-PPI2 (p = 1.5 × 10) and MutaBind2 (p = 0.0025). Missense3D-PPI represents a valuable tool for predicting the structural effect of missense variants on biological protein networks and is available at the Missense3D web portal (http://missense3d.bc.ic.ac.uk).
2019 年,我们发布了 Missense3D,它可以识别因错义变异而被破坏的立体化学特征,例如引入埋藏电荷。Missense3D 分析错义变异对单个结构的影响,因此可能无法识别破坏蛋白质界面(即蛋白质-蛋白质相互作用(PPI)位点)的表面变异。在这里,我们提出了 Missense3D-PPI,旨在预测 PPI 界面上的错义变异。我们的开发数据集由 434 个蛋白质中的 1279 个错义变异(致病性 n = 733,良性 n = 546)和 545 个 PPI 复合物的实验结构组成。在将数据集分为训练集(320 个良性和 320 个致病性变异)和测试集(226 个良性和 413 个致病性变异)后,对 Missense3D-PPI 进行了基准测试。分析了影响 PPI 的结构特征,例如破坏链间键和引入非平衡带电界面残基,以评估变体在 PPI 中的影响。Missense3D-PPI 的性能优于 Missense3D:敏感性 44%对 8%和准确性 58%对 40%,p=4.23×10。然而,与 Missense3D 相比,Missense3D-PPI 的特异性较低(84%对 98%)。在我们的数据集上,Missense3D-PPI 的准确性优于 BeAtMuSiC(p=3.4×10)、mCSM-PPI2(p=1.5×10)和 MutaBind2(p=0.0025)。Missense3D-PPI 是一种预测错义变异对生物蛋白质网络结构影响的有价值的工具,可在 Missense3D 门户网站(http://missense3d.bc.ic.ac.uk)获得。