Suppr超能文献

海马分级为 AD 轨迹人群提供了比海马体积更高的分类准确性。

Hippocampal grading provides higher classification accuracy for those in the AD trajectory than hippocampal volume.

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Department of Psychiatry, McGill University, Montreal, Quebec, Canada.

出版信息

Hum Brain Mapp. 2023 Aug 15;44(12):4623-4633. doi: 10.1002/hbm.26407. Epub 2023 Jun 26.

Abstract

Much research has focused on neurodegeneration in aging and Alzheimer's disease (AD). We developed Scoring by Nonlocal Image Patch Estimator (SNIPE), a non-local patch-based measure of anatomical similarity and hippocampal segmentation to measure hippocampal change. While SNIPE shows enhanced predictive power over hippocampal volume, it is unknown whether SNIPE is more strongly associated with group differences between normal controls (NC), early MCI (eMCI), late (lMCI), and AD than hippocampal volume. Alzheimer's Disease Neuroimaging Initiative older adults were included in the first analyses (N = 1666, 513 NCs, 269 eMCI, 556 lMCI, and 328 AD). Sub-analyses investigated amyloid positive individuals (N = 834; 179 NC, 148 eMCI, 298 lMCI, and 209 AD) to determine accuracy in those on the AD trajectory. We compared SNIPE grading, SNIPE volume, and Freesurfer volume as features in seven different machine learning techniques classifying participants into their correct cohort using 10-fold cross-validation. The best model was then validated in the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). SNIPE grading provided the highest classification accuracy for all classifications in both the full and amyloid positive sample. When classifying NC:AD, SNIPE grading provided an 89% accuracy (full sample) and 87% (amyloid positive sample). Freesurfer volume provided much lower accuracies of 65% (full sample) and 46% (amyloid positive sample). In the AIBL validation cohort, SNIPE grading provided a 90% classification accuracy for NC:AD. These findings suggest SNIPE grading provides increased classification accuracy over both SNIPE and Freesurfer volume. SNIPE grading offers promise to accurately identify people with and without AD.

摘要

大量研究集中在衰老和阿尔茨海默病(AD)的神经退行性变上。我们开发了基于非局部图像补丁估计器(SNIPE)的评分方法,这是一种基于非局部补丁的解剖相似性和海马体分割测量方法,用于测量海马体变化。虽然 SNIPE 显示出比海马体体积更强的预测能力,但尚不清楚 SNIPE 与正常对照组(NC)、早期轻度认知障碍(eMCI)、晚期(lMCI)和 AD 之间的组间差异的相关性是否强于海马体体积。阿尔茨海默病神经影像学倡议的老年人被纳入了第一次分析(N=1666,513 名 NC,269 名 eMCI,556 名 lMCI 和 328 名 AD)。亚分析调查了淀粉样蛋白阳性个体(N=834;179 名 NC,148 名 eMCI,298 名 lMCI 和 209 名 AD),以确定在 AD 轨迹上的个体的准确性。我们比较了 SNIPE 分级、SNIPE 体积和 Freesurfer 体积作为七种不同机器学习技术的特征,这些技术使用 10 倍交叉验证将参与者分类到其正确的队列中。然后在澳大利亚成像、生物标志物和生活方式旗舰研究老化(AIBL)中验证了最佳模型。在全样本和淀粉样蛋白阳性样本中,SNIPE 分级在所有分类中提供了最高的分类准确性。在分类 NC:AD 时,SNIPE 分级的准确率为 89%(全样本)和 87%(淀粉样蛋白阳性样本)。Freesurfer 体积的准确率要低得多,分别为 65%(全样本)和 46%(淀粉样蛋白阳性样本)。在 AIBL 验证队列中,SNIPE 分级对 NC:AD 的分类准确率为 90%。这些发现表明,SNIPE 分级提供了比 SNIPE 和 Freesurfer 体积更高的分类准确性。SNIPE 分级有望准确识别有无 AD 的人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/10365231/b3f24977f5ba/HBM-44-4623-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验