Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
Chem Biol Interact. 2023 Sep 1;382:110608. doi: 10.1016/j.cbi.2023.110608. Epub 2023 Jun 25.
Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [C]-benzo[a]pyrene ([C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [C]-BaP (50 ng, 5.4 nCi) or the same dose of [C]-BaP plus Phe (1250 ng). Following the binary mixture, C of [C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (V) increased (2-fold). Further, the toxicokinetics of twelve [C]-BaP metabolites provided evidence of little change in the metabolite profile of [C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in C). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [C]-BaP, CYP1A2, the high inhibition constant (K) and lack of any increase in unmetabolized [C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.
目前对环境致癌物的风险评估依赖于动物研究,这些研究使用的剂量比实际人类暴露量高出几个数量级。对高暴露人群(如职业暴露人群)的流行病学研究具有一定价值,但依赖于不确定的暴露数据。此外,暴露通常不是单一化学物质,而是混合物,如多环芳烃(PAHs)。加速器质谱(AMS)的极高灵敏度使得可以以最小风险对已知致癌物对人体进行给药。在这项研究中,使用超高效液相色谱-AMS 来评估单独或与菲(Phe)混合给药时 [C]-苯并[a]芘 ([C]-BaP) 的毒代动力学。在给予 [C]-BaP(50ng,5.4nCi)或相同剂量的 [C]-BaP 和 Phe 后,在 48 小时内采集血浆。与单独给予 [C]-BaP 相比,给予二元混合物后 [C]-BaP 的 C 显著降低(4.4 倍),而分布容积(V)增加(2 倍)。此外,十二种 [C]-BaP 代谢物的毒代动力学提供了证据,表明 [C]-BaP 代谢物谱几乎没有变化,总体模式是与吸收减少一致的减少(C 降低)。尽管 Phe 被证明是主要肝细胞色素 P-450(CYP)的竞争性抑制剂,负责 [C]-BaP 的代谢,但 CYP1A2,高抑制常数(K)和血浆中未代谢的 [C]-BaP 没有任何增加使得这种机制不太可能是负责的。相反,Phe 的共同给药通过尚未确定的机制降低了 [C]-BaP 的吸收。这是第一项提供证据的研究,即在实际环境暴露水平下,人类 [C]-BaP 的毒代动力学在第二种 PAH,即环境 PAH 混合物中常见成分 Phe 的存在下明显改变。