Suppr超能文献

对以色列突变携带者连续进行磁共振成像扫描并应用基于人工智能的分析,实现乳腺癌的“超早期”检测

'Earlier than Early' Detection of Breast Cancer in Israeli Mutation Carriers Applying AI-Based Analysis to Consecutive MRI Scans.

作者信息

Anaby Debbie, Shavin David, Zimmerman-Moreno Gali, Nissan Noam, Friedman Eitan, Sklair-Levy Miri

机构信息

Department of Diagnostic Imaging, Sheba Medical Center, Ramat Gan 52621, Israel.

Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6910201, Israel.

出版信息

Cancers (Basel). 2023 Jun 8;15(12):3120. doi: 10.3390/cancers15123120.

Abstract

Female (=) pathogenic variants (PVs) carriers are at a substantially higher risk for developing breast cancer (BC) compared with the average risk population. Detection of BC at an early stage significantly improves prognosis. To facilitate early BC detection, a surveillance scheme is offered to PV carriers from age 25-30 years that includes annual MRI based breast imaging. Indeed, adherence to the recommended scheme has been shown to be associated with earlier disease stages at BC diagnosis, more in-situ pathology, smaller tumors, and less axillary involvement. While MRI is the most sensitive modality for BC detection in PV carriers, there are a significant number of overlooked or misinterpreted radiological lesions (mostly enhancing foci), leading to a delayed BC diagnosis at a more advanced stage. In this study we developed an artificial intelligence (AI)-network, aimed at a more accurate classification of enhancing foci, in MRIs of PV carriers, thus reducing false-negative interpretations. Retrospectively identified foci in prior MRIs that were either diagnosed as BC or benign/normal in a subsequent MRI were manually segmented and served as input for a convolutional network architecture. The model was successful in classification of 65% of the cancerous foci, most of them triple-negative BC. If validated, applying this scheme routinely may facilitate 'earlier than early' BC diagnosis in PV carriers.

摘要

与一般风险人群相比,携带女性(=)致病变体(PVs)的个体患乳腺癌(BC)的风险要高得多。早期发现乳腺癌可显著改善预后。为便于早期发现乳腺癌,我们为25至30岁的PV携带者提供了一项监测方案,其中包括每年进行基于MRI的乳腺成像检查。事实上,遵循推荐方案已被证明与乳腺癌诊断时疾病分期更早、原位病理更多、肿瘤更小以及腋窝受累更少有关。虽然MRI是检测PV携带者乳腺癌最敏感的方式,但仍有大量放射学病变(主要是强化灶)被忽视或误判,导致乳腺癌在更晚期才被诊断出来。在本研究中,我们开发了一种人工智能(AI)网络,旨在对PV携带者的MRI图像中的强化灶进行更准确的分类,从而减少假阴性判读。对先前MRI中回顾性识别出的病灶进行手动分割,这些病灶在后续MRI中被诊断为乳腺癌或良性/正常,作为卷积网络架构的输入。该模型成功分类了65%的癌灶,其中大多数为三阴性乳腺癌。如果得到验证,常规应用该方案可能有助于PV携带者实现“早于早期”的乳腺癌诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a015/10296520/25b0f5082b90/cancers-15-03120-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验