Sleiman Ahmad, Lalanne Kévin, Vianna François, Perrot Yann, Richaud Myriam, SenGupta Tanima, Cardot-Martin Mikaël, Pedini Pascal, Picard Christophe, Nilsen Hilde, Galas Simon, Adam-Guillermin Christelle
Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France.
Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France.
Biology (Basel). 2023 Jun 9;12(6):839. doi: 10.3390/biology12060839.
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of (PTEN-induced kinase) and ( parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.
全球所有癌症患者中有50%需要放疗。就脑肿瘤而言,尽管质子治疗在放射剂量精准度方面有所提高,但研究表明,接受质子治疗的患者大脑出现了结构和功能变化。产生这些影响的分子途径尚未完全明确。在此背景下,我们分析了质子照射对中枢神经系统区域的影响,重点关注线粒体功能,其可能与辐射诱导损伤的发生有关。为实现这一目标,使用质子微束MIRCOM对秀丽隐杆线虫的神经环(头部区域)进行220 Gy(4 MeV)的质子微照射。我们的结果表明,质子会诱导线粒体功能障碍,其特征是照射后24小时线粒体膜电位(ΔΨm)立即出现剂量依赖性丧失,并伴有氧化应激,氧化应激本身的特征是在使用SOD-1::GFP和SOD-3::GFP菌株观察到的靶向区域中抗氧化蛋白的诱导。此外,我们证明照射后24小时靶向区域的线粒体DNA拷贝数增加了两倍。另外,使用GFP::LGG-1菌株,照射后6小时在照射区域观察到自噬诱导,这与磷酸酶和张力蛋白同源物诱导激酶(PTEN-induced kinase)和帕金森病同源蛋白(parkin homolog)的基因表达上调有关。此外,我们的数据表明,神经环区域的微照射在照射后24小时不会影响全身耗氧量。这些结果表明质子照射后照射区域存在整体线粒体功能障碍。这有助于更好地理解辐射诱导副作用所涉及的分子途径,并可能有助于找到新的治疗方法。