Suppr超能文献

基于小波嵌入的深度学习计算机断层扫描图像超分辨率技术

Deep learning-based computed tomographic image super-resolution via wavelet embedding.

作者信息

Kim Hyeongsub, Lee Haenghwa, Lee Donghoon

机构信息

School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37674, Republic of Korea.

Deepnoid Inc., Seoul 08376, South Korea.

出版信息

Radiat Phys Chem Oxf Engl 1993. 2023 Apr;205. doi: 10.1016/j.radphyschem.2022.110718. Epub 2022 Dec 9.

Abstract

Effort to realize high-resolution medical images have been made steadily. In particular, super resolution technology based on deep learning is making excellent achievement in computer vision recently. In this study, we developed a model that can dramatically increase the spatial resolution of medical images using deep learning technology, and we try to demonstrate the superiority of proposed model by analyzing it quantitatively. We simulated the computed tomography images with various detector pixel size and tried to restore the low-resolution image to high resolution image. We set the pixel size to 0.5, 0.8 and 1 mm for low resolution image and the high-resolution image, which were used for ground truth, was simulated with 0.25 mm pixel size. The deep learning model that we used was a fully convolution neural network based on residual structure. The result image demonstrated that proposed super resolution convolution neural network improve image resolution significantly. We also confirmed that PSNR and MTF was improved up to 38 % and 65% respectively. The quality of the prediction image is not significantly different depending on the quality of the input image. In addition, the proposed technique not only increases image resolution but also has some effect on noise reduction. In conclusion, we developed deep learning architectures for improving image resolution of computed tomography images. We quantitatively confirmed that the proposed technique effectively improves image resolution without distorting the anatomical structures.

摘要

人们一直在稳步努力实现高分辨率医学图像。特别是,基于深度学习的超分辨率技术最近在计算机视觉领域取得了优异成果。在本研究中,我们开发了一种能够利用深度学习技术显著提高医学图像空间分辨率的模型,并试图通过定量分析来证明所提出模型的优越性。我们模拟了具有各种探测器像素尺寸的计算机断层扫描图像,并尝试将低分辨率图像恢复为高分辨率图像。对于低分辨率图像,我们将像素尺寸设置为0.5、0.8和1毫米,而用于地面真值的高分辨率图像则以0.25毫米像素尺寸进行模拟。我们使用的深度学习模型是基于残差结构的全卷积神经网络。结果图像表明,所提出的超分辨率卷积神经网络显著提高了图像分辨率。我们还证实,峰值信噪比(PSNR)和调制传递函数(MTF)分别提高了38%和65%。预测图像的质量并不因输入图像的质量而有显著差异。此外,所提出的技术不仅提高了图像分辨率,而且对降噪也有一定效果。总之,我们开发了用于提高计算机断层扫描图像分辨率的深度学习架构。我们定量证实了所提出的技术在不扭曲解剖结构的情况下有效地提高了图像分辨率。

相似文献

5
6
Residual dense network for medical magnetic resonance images super-resolution.基于残差密集网络的医学磁共振图像超分辨率重建。
Comput Methods Programs Biomed. 2021 Sep;209:106330. doi: 10.1016/j.cmpb.2021.106330. Epub 2021 Aug 4.

本文引用的文献

5
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
6
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
7
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
8
Advances in computed tomography imaging technology.计算机断层扫描成像技术的进展。
Annu Rev Biomed Eng. 2014 Jul 11;16:431-53. doi: 10.1146/annurev-bioeng-121813-113601.
9
Computed tomography--old ideas and new technology.计算机断层扫描——旧观念与新技术。
Eur Radiol. 2011 Mar;21(3):510-7. doi: 10.1007/s00330-011-2056-z. Epub 2011 Jan 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验