Suppr超能文献

基于长短时记忆和注意力机制的生成对抗网络实现三维医学图像超分辨率重建

Super-resolution of 3D medical images by generative adversarial networks with long and short-term memory and attention.

作者信息

Zhang Qiong, Hang Yiliu, Wu Fang, Wang Shentao, Hong Yue

机构信息

College of Yonyou Digital & Intelligence, Nantong Institute of Technology, Nantong, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20828. doi: 10.1038/s41598-025-05783-7.

Abstract

Since 3D medical imaging data is a string of sequential images, there is a strong correlation between consecutive images. Deep convolutional networks perform well in extracting spatial features, but are less capable for processing sequence data compared to recurrent convolutional networks. Therefore, we propose a long short-term memory and attention based generative adversarial network (LSTMAGAN) to realize super-resolution reconstruction of 3D medical image. Firstly, we use generative adversarial networks as the base model for super-resolution image reconstruction. Secondly, a long and short-term memory network, which specializes in dealing with long-term dependencies in sequential data, was used to process continuous sequential data of 3D medical images based on its ability to remember and forget information efficiently. Next, an attention gate is used to suppress the background noise information and improve the clarity of image features. Finally, the method proposed in this paper is applied on the Luna16 and BraTs2021 datasets. The experimental results show that the proposed method improves the PSNR and SSIM evaluation indexes compared with other comparative methods, respectively. Therefore, it can prove the advancement and effectiveness of the proposed method.

摘要

由于3D医学成像数据是一连串的序列图像,连续图像之间存在很强的相关性。深度卷积网络在提取空间特征方面表现出色,但与循环卷积网络相比,处理序列数据的能力较弱。因此,我们提出了一种基于长短期记忆和注意力机制的生成对抗网络(LSTMAGAN)来实现3D医学图像的超分辨率重建。首先,我们使用生成对抗网络作为超分辨率图像重建的基础模型。其次,长短期记忆网络专门处理序列数据中的长期依赖关系,基于其高效记忆和遗忘信息的能力,用于处理3D医学图像的连续序列数据。接下来,使用注意力门来抑制背景噪声信息并提高图像特征的清晰度。最后,将本文提出的方法应用于Luna16和BraTs2021数据集。实验结果表明,与其他对比方法相比,该方法分别提高了PSNR和SSIM评估指标。因此,可以证明该方法的先进性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验