Suppr超能文献

深眼底:一种类似流式细胞术的图像质量分类器,用于提升医疗人工智能的整个生命周期。

DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China.

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China.

出版信息

Cell Rep Med. 2023 Feb 21;4(2):100912. doi: 10.1016/j.xcrm.2022.100912. Epub 2023 Jan 19.

Abstract

Medical artificial intelligence (AI) has been moving from the research phase to clinical implementation. However, most AI-based models are mainly built using high-quality images preprocessed in the laboratory, which is not representative of real-world settings. This dataset bias proves a major driver of AI system dysfunction. Inspired by the design of flow cytometry, DeepFundus, a deep-learning-based fundus image classifier, is developed to provide automated and multidimensional image sorting to address this data quality gap. DeepFundus achieves areas under the receiver operating characteristic curves (AUCs) over 0.9 in image classification concerning overall quality, clinical quality factors, and structural quality analysis on both the internal test and national validation datasets. Additionally, DeepFundus can be integrated into both model development and clinical application of AI diagnostics to significantly enhance model performance for detecting multiple retinopathies. DeepFundus can be used to construct a data-driven paradigm for improving the entire life cycle of medical AI practice.

摘要

医疗人工智能(AI)已经从研究阶段进入临床实施阶段。然而,大多数基于 AI 的模型主要是使用在实验室中预处理的高质量图像构建的,这些图像并不代表真实世界的环境。这种数据集偏差是导致 AI 系统功能失调的主要原因。受流式细胞术设计的启发,开发了一种基于深度学习的眼底图像分类器 DeepFundus,以提供自动化和多维图像分类,以解决数据质量差距问题。DeepFundus 在内部测试和全国验证数据集上的整体质量、临床质量因素和结构质量分析方面,在图像分类方面的受试者工作特征曲线(AUC)超过 0.9。此外,DeepFundus 可以集成到 AI 诊断模型的开发和临床应用中,以显著提高检测多种视网膜病变的模型性能。DeepFundus 可用于构建一个数据驱动的范例,以改善医疗 AI 实践的整个生命周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8de1/9975093/08c0942a887b/fx1.jpg

相似文献

1
DeepFundus: A flow-cytometry-like image quality classifier for boosting the whole life cycle of medical artificial intelligence.
Cell Rep Med. 2023 Feb 21;4(2):100912. doi: 10.1016/j.xcrm.2022.100912. Epub 2023 Jan 19.
2
Solving data quality issues of fundus images in real-world settings by ophthalmic AI.
Cell Rep Med. 2023 Feb 21;4(2):100951. doi: 10.1016/j.xcrm.2023.100951.
4
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.
Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8.
5
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779.
6
Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.
Clin Exp Ophthalmol. 2019 May;47(4):484-489. doi: 10.1111/ceo.13433. Epub 2018 Nov 15.
8
Protocol to analyze fundus images for multidimensional quality grading and real-time guidance using deep learning techniques.
STAR Protoc. 2023 Dec 15;4(4):102565. doi: 10.1016/j.xpro.2023.102565. Epub 2023 Sep 20.

引用本文的文献

2
Diabetic Retinopathy Assessment through Multitask Learning Approach on Heterogeneous Fundus Image Datasets.
Ophthalmol Sci. 2025 Mar 11;5(5):100755. doi: 10.1016/j.xops.2025.100755. eCollection 2025 Sep-Oct.
3
A Systematic Review of Medical Image Quality Assessment.
J Imaging. 2025 Mar 27;11(4):100. doi: 10.3390/jimaging11040100.
5
Enhancing the ophthalmic AI assessment with a fundus image quality classifier using local and global attention mechanisms.
Front Med (Lausanne). 2024 Aug 7;11:1418048. doi: 10.3389/fmed.2024.1418048. eCollection 2024.
8
AI diagnosis of Bethesda category IV thyroid nodules.
iScience. 2023 Oct 4;26(11):108114. doi: 10.1016/j.isci.2023.108114. eCollection 2023 Nov 17.
9
DeepQuality improves infant retinopathy screening.
NPJ Digit Med. 2023 Oct 16;6(1):192. doi: 10.1038/s41746-023-00943-3.
10
Artificial intelligence in ophthalmology: The path to the real-world clinic.
Cell Rep Med. 2023 Jul 18;4(7):101095. doi: 10.1016/j.xcrm.2023.101095. Epub 2023 Jun 28.

本文引用的文献

1
DeepDRiD: Diabetic Retinopathy-Grading and Image Quality Estimation Challenge.
Patterns (N Y). 2022 May 20;3(6):100512. doi: 10.1016/j.patter.2022.100512. eCollection 2022 Jun 10.
2
Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study.
Lancet Digit Health. 2022 Apr;4(4):e235-e244. doi: 10.1016/S2589-7500(22)00017-6. Epub 2022 Mar 7.
3
Image quality issues in teledermatology: A comparative analysis of artificial intelligence solutions.
J Am Acad Dermatol. 2022 Jul;87(1):240-242. doi: 10.1016/j.jaad.2021.07.073. Epub 2021 Aug 10.
4
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.
Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8.
5
The Clinician and Dataset Shift in Artificial Intelligence.
N Engl J Med. 2021 Jul 15;385(3):283-286. doi: 10.1056/NEJMc2104626.
6
A deep learning system for detecting diabetic retinopathy across the disease spectrum.
Nat Commun. 2021 May 28;12(1):3242. doi: 10.1038/s41467-021-23458-5.
7
Precision medicine in 2030-seven ways to transform healthcare.
Cell. 2021 Mar 18;184(6):1415-1419. doi: 10.1016/j.cell.2021.01.015.
9
Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs.
N Engl J Med. 2020 Apr 30;382(18):1687-1695. doi: 10.1056/NEJMoa1917130. Epub 2020 Apr 14.
10
Domain-invariant interpretable fundus image quality assessment.
Med Image Anal. 2020 Apr;61:101654. doi: 10.1016/j.media.2020.101654. Epub 2020 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验