Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, 408 E 69th Street, New York, NY 10021, United States.
Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, United States.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i394-i403. doi: 10.1093/bioinformatics/btad267.
Transcriptional dynamics are governed by the action of regulatory proteins and are fundamental to systems ranging from normal development to disease. RNA velocity methods for tracking phenotypic dynamics ignore information on the regulatory drivers of gene expression variability through time.
We introduce scKINETICS (Key regulatory Interaction NETwork for Inferring Cell Speed), a dynamical model of gene expression change which is fit with the simultaneous learning of per-cell transcriptional velocities and a governing gene regulatory network. Fitting is accomplished through an expectation-maximization approach designed to learn the impact of each regulator on its target genes, leveraging biologically motivated priors from epigenetic data, gene-gene coexpression, and constraints on cells' future states imposed by the phenotypic manifold. Applying this approach to an acute pancreatitis dataset recapitulates a well-studied axis of acinar-to-ductal transdifferentiation whilst proposing novel regulators of this process, including factors with previously appreciated roles in driving pancreatic tumorigenesis. In benchmarking experiments, we show that scKINETICS successfully extends and improves existing velocity approaches to generate interpretable, mechanistic models of gene regulatory dynamics.
All python code and an accompanying Jupyter notebook with demonstrations are available at http://github.com/dpeerlab/scKINETICS.
转录动力学受调节蛋白的作用控制,是从正常发育到疾病等系统的基础。用于跟踪表型动力学的 RNA 速度方法忽略了随时间变化的基因表达可变性的调节驱动因素的信息。
我们引入了 scKINETICS(用于推断细胞速度的关键调节互作网络),这是一种基因表达变化的动力学模型,它可以同时学习每个细胞的转录速度和一个控制基因调控网络。通过一种期望最大化的方法来拟合,该方法旨在学习每个调节剂对其靶基因的影响,利用来自表观遗传数据、基因-基因共表达以及表型流形对细胞未来状态施加的约束的生物学动机先验。将这种方法应用于急性胰腺炎数据集,重现了一个经过充分研究的腺泡到导管转分化轴,同时提出了这个过程的新调节剂,包括以前被认为在驱动胰腺肿瘤发生中起作用的因子。在基准测试实验中,我们表明 scKINETICS 成功地扩展和改进了现有的速度方法,生成了可解释的、基因调控动力学的机制模型。
所有的 python 代码和一个带有演示的 Jupyter 笔记本都可以在 http://github.com/dpeerlab/scKINETICS 上获得。