Suppr超能文献

塞尔焦:基于基因调控网络的单细胞表达模拟器。

SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks.

机构信息

Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Cell Syst. 2020 Sep 23;11(3):252-271.e11. doi: 10.1016/j.cels.2020.08.003. Epub 2020 Aug 31.

Abstract

A common approach to benchmarking of single-cell transcriptomics tools is to generate synthetic datasets that statistically resemble experimental data. However, most existing single-cell simulators do not incorporate transcription factor-gene regulatory interactions that underlie expression dynamics. Here, we present SERGIO, a simulator of single-cell gene expression data that models the stochastic nature of transcription as well as regulation of genes by multiple transcription factors according to a user-provided gene regulatory network. SERGIO can simulate any number of cell types in steady state or cells differentiating to multiple fates. We show that datasets generated by SERGIO are statistically comparable to experimental data generated by Illumina HiSeq2000, Drop-seq, Illumina 10X chromium, and Smart-seq. We use SERGIO to benchmark several single-cell analysis tools, including GRN inference methods, and identify Tcf7, Gata3, and Bcl11b as key drivers of T cell differentiation by performing in silico knockout experiments. SERGIO is freely available for download here: https://github.com/PayamDiba/SERGIO.

摘要

一种常用于单细胞转录组学工具基准测试的方法是生成统计上类似于实验数据的合成数据集。然而,大多数现有的单细胞模拟器并未纳入构成表达动态基础的转录因子-基因调控相互作用。在这里,我们提出了 SERGIO,这是一种单细胞基因表达数据的模拟器,它根据用户提供的基因调控网络,对转录的随机性以及多个转录因子对基因的调控进行建模。SERGIO 可以模拟稳态或分化为多种命运的任意数量的细胞类型。我们表明,SERGIO 生成的数据集在统计学上可与 Illumina HiSeq2000、Drop-seq、Illumina 10X chromium 和 Smart-seq 生成的实验数据相媲美。我们使用 SERGIO 对几种单细胞分析工具进行了基准测试,包括 GRN 推断方法,并通过进行计算机模拟敲除实验,确定 Tcf7、Gata3 和 Bcl11b 是 T 细胞分化的关键驱动因素。SERGIO 可在此处免费下载:https://github.com/PayamDiba/SERGIO。

相似文献

1
SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks.
Cell Syst. 2020 Sep 23;11(3):252-271.e11. doi: 10.1016/j.cels.2020.08.003. Epub 2020 Aug 31.
3
Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.
Cell Syst. 2020 Mar 25;10(3):265-274.e11. doi: 10.1016/j.cels.2020.02.003. Epub 2020 Mar 4.
4
COFFEE: consensus single cell-type specific inference for gene regulatory networks.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae457.
5
6
Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
Bioinformatics. 2022 Sep 30;38(19):4522-4529. doi: 10.1093/bioinformatics/btac559.
7
SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
J Bioinform Comput Biol. 2019 Dec;17(6):1950035. doi: 10.1142/S0219720019500355.
8
Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
Methods Mol Biol. 2021;2328:171-182. doi: 10.1007/978-1-0716-1534-8_10.
9
Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae267.
10
Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data.
Nat Methods. 2020 Feb;17(2):147-154. doi: 10.1038/s41592-019-0690-6. Epub 2020 Jan 6.

引用本文的文献

1
Gene regulatory network structure informs the distribution of perturbation effects.
PLoS Comput Biol. 2025 Sep 2;21(9):e1013387. doi: 10.1371/journal.pcbi.1013387. eCollection 2025 Sep.
5
Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.
Nat Commun. 2025 Jul 1;16(1):5970. doi: 10.1038/s41467-025-61149-7.
6
Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.
bioRxiv. 2025 Jun 3:2025.05.31.657197. doi: 10.1101/2025.05.31.657197.
7
Learning Genetic Perturbation Effects with Variational Causal Inference.
bioRxiv. 2025 Jun 5:2025.06.05.657988. doi: 10.1101/2025.06.05.657988.
8
TRENDY: gene regulatory network inference enhanced by transformer.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf314.
9
Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation.
PLoS Comput Biol. 2025 May 8;21(5):e1012476. doi: 10.1371/journal.pcbi.1012476. eCollection 2025 May.
10
Discovering governing equations of biological systems through representation learning and sparse model discovery.
NAR Genom Bioinform. 2025 Apr 26;7(2):lqaf048. doi: 10.1093/nargab/lqaf048. eCollection 2025 Jun.

本文引用的文献

1
Network inference with Granger causality ensembles on single-cell transcriptomics.
Cell Rep. 2022 Feb 8;38(6):110333. doi: 10.1016/j.celrep.2022.110333.
2
scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
Bioinformatics. 2020 May 1;36(10):3156-3161. doi: 10.1093/bioinformatics/btaa139.
4
Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data.
Nat Methods. 2020 Feb;17(2):147-154. doi: 10.1038/s41592-019-0690-6. Epub 2020 Jan 6.
5
Single-Cell Analysis Reveals Regulatory Gene Expression Dynamics Leading to Lineage Commitment in Early T Cell Development.
Cell Syst. 2019 Oct 23;9(4):321-337.e9. doi: 10.1016/j.cels.2019.09.008. Epub 2019 Oct 16.
6
Benchmarking fold detection by DaliLite v.5.
Bioinformatics. 2019 Dec 15;35(24):5326-5327. doi: 10.1093/bioinformatics/btz536.
7
A cellular census of human lungs identifies novel cell states in health and in asthma.
Nat Med. 2019 Jul;25(7):1153-1163. doi: 10.1038/s41591-019-0468-5. Epub 2019 Jun 17.
8
Simulating multiple faceted variability in single cell RNA sequencing.
Nat Commun. 2019 Jun 13;10(1):2611. doi: 10.1038/s41467-019-10500-w.
9
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data.
Genome Biol. 2019 May 6;20(1):88. doi: 10.1186/s13059-019-1681-8.
10
scMatch: a single-cell gene expression profile annotation tool using reference datasets.
Bioinformatics. 2019 Nov 1;35(22):4688-4695. doi: 10.1093/bioinformatics/btz292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验