Department of Surgery, University of Southern California, LAC+USC Medical Center (The work was done at LAC+USC Medical Center), Los Angeles, CA, USA.
Department of Surgery, University of Alberta, Edmonton, AB, Canada.
World J Surg. 2023 Oct;47(10):2340-2346. doi: 10.1007/s00268-023-07098-y. Epub 2023 Jun 30.
Accurately predicting which patients are most likely to benefit from massive transfusion protocol (MTP) activation may help patients while saving blood products and limiting cost. The purpose of this study is to explore the use of modern machine learning (ML) methods to develop and validate a model that can accurately predict the need for massive blood transfusion (MBT).
The institutional trauma registry was used to identify all trauma team activation cases between June 2015 and August 2019. We used an ML framework to explore multiple ML methods including logistic regression with forward and backward selection, logistic regression with lasso and ridge regularization, support vector machines (SVM), decision tree, random forest, naive Bayes, XGBoost, AdaBoost, and neural networks. Each model was then assessed using sensitivity, specificity, positive predictive value, and negative predictive value. Model performance was compared to that of existing scores including the Assessment of Blood Consumption (ABC) and the Revised Assessment of Bleeding and Transfusion (RABT).
A total of 2438 patients were included in the study, with 4.9% receiving MBT. All models besides decision tree and SVM attained an area under the curve (AUC) of above 0.75 (range: 0.75-0.83). Most of the ML models have higher sensitivity (0.55-0.83) than the ABC and RABT score (0.36 and 0.55, respectively) while maintaining comparable specificity (0.75-0.81; ABC 0.80 and RABT 0.83).
Our ML models performed better than existing scores. Implementing an ML model in mobile computing devices or electronic health record has the potential to improve the usability.
准确预测哪些患者最有可能受益于大量输血方案(MTP)的激活,可能有助于患者,同时节省血液制品并限制成本。本研究的目的是探索使用现代机器学习(ML)方法来开发和验证一种能够准确预测大量输血(MBT)需求的模型。
利用机构创伤登记处,确定 2015 年 6 月至 2019 年 8 月期间所有创伤小组激活病例。我们使用 ML 框架来探索多种 ML 方法,包括向前和向后选择的逻辑回归、带有lasso 和 ridge 正则化的逻辑回归、支持向量机(SVM)、决策树、随机森林、朴素贝叶斯、XGBoost、AdaBoost 和神经网络。然后使用敏感性、特异性、阳性预测值和阴性预测值评估每个模型。将模型性能与现有的评分(包括 ABC 和 RABT)进行比较。
共纳入 2438 例患者,其中 4.9%的患者接受 MBT。除决策树和 SVM 外,所有模型的曲线下面积(AUC)均高于 0.75(范围:0.75-0.83)。大多数 ML 模型的敏感性(0.55-0.83)高于 ABC 和 RABT 评分(分别为 0.36 和 0.55),同时保持类似的特异性(0.75-0.81;ABC 为 0.80,RABT 为 0.83)。
我们的 ML 模型的性能优于现有评分。在移动计算设备或电子健康记录中实施 ML 模型具有提高可用性的潜力。