Suppr超能文献

皮质生长抑素中间神经元亚型形成细胞类型特异性回路。

Cortical somatostatin interneuron subtypes form cell-type-specific circuits.

作者信息

Wu Sherry Jingjing, Sevier Elaine, Dwivedi Deepanjali, Saldi Giuseppe-Antonio, Hairston Ariel, Yu Sabrina, Abbott Lydia, Choi Da Hae, Sherer Mia, Qiu Yanjie, Shinde Ashwini, Lenahan Mackenzie, Rizzo Daniella, Xu Qing, Barrera Irving, Kumar Vipin, Marrero Giovanni, Prönneke Alvar, Huang Shuhan, Kullander Klas, Stafford David A, Macosko Evan, Chen Fei, Rudy Bernardo, Fishell Gord

机构信息

Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Neuron. 2023 Sep 6;111(17):2675-2692.e9. doi: 10.1016/j.neuron.2023.05.032. Epub 2023 Jun 29.

Abstract

The cardinal classes are a useful simplification of cortical interneuron diversity, but such broad subgroupings gloss over the molecular, morphological, and circuit specificity of interneuron subtypes, most notably among the somatostatin interneuron class. Although there is evidence that this diversity is functionally relevant, the circuit implications of this diversity are unknown. To address this knowledge gap, we designed a series of genetic strategies to target the breadth of somatostatin interneuron subtypes and found that each subtype possesses a unique laminar organization and stereotyped axonal projection pattern. Using these strategies, we examined the afferent and efferent connectivity of three subtypes (two Martinotti and one non-Martinotti) and demonstrated that they possess selective connectivity with intratelecephalic or pyramidal tract neurons. Even when two subtypes targeted the same pyramidal cell type, their synaptic targeting proved selective for particular dendritic compartments. We thus provide evidence that subtypes of somatostatin interneurons form cell-type-specific cortical circuits.

摘要

主要类别是对皮质中间神经元多样性的一种有用简化,但这种宽泛的亚群划分掩盖了中间神经元亚型的分子、形态和回路特异性,在生长抑素中间神经元类别中尤为明显。尽管有证据表明这种多样性具有功能相关性,但其在回路方面的影响尚不清楚。为了填补这一知识空白,我们设计了一系列基因策略来针对生长抑素中间神经元亚型的广度,发现每个亚型都具有独特的分层组织和刻板的轴突投射模式。利用这些策略,我们研究了三种亚型(两种马丁诺蒂型和一种非马丁诺蒂型)的传入和传出连接,并证明它们与脑内或锥体束神经元具有选择性连接。即使两种亚型靶向相同类型的锥体细胞,它们的突触靶向也被证明对特定的树突隔室具有选择性。因此,我们提供了证据表明生长抑素中间神经元亚型形成了细胞类型特异性的皮质回路。

相似文献

1
Cortical somatostatin interneuron subtypes form cell-type-specific circuits.
Neuron. 2023 Sep 6;111(17):2675-2692.e9. doi: 10.1016/j.neuron.2023.05.032. Epub 2023 Jun 29.
2
Diversity and Connectivity of Layer 5 Somatostatin-Expressing Interneurons in the Mouse Barrel Cortex.
J Neurosci. 2018 Feb 14;38(7):1622-1633. doi: 10.1523/JNEUROSCI.2415-17.2017. Epub 2018 Jan 11.
3
Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex.
J Neurosci. 2022 Oct 26;42(43):8095-8112. doi: 10.1523/JNEUROSCI.0950-22.2022. Epub 2022 Sep 14.
4
Inhibition by Somatostatin Interneurons in Olfactory Cortex.
Front Neural Circuits. 2016 Aug 17;10:62. doi: 10.3389/fncir.2016.00062. eCollection 2016.
5
Pharmacological Signature and Target Specificity of Inhibitory Circuits Formed by Martinotti Cells in the Mouse Barrel Cortex.
J Neurosci. 2023 Jan 4;43(1):14-27. doi: 10.1523/JNEUROSCI.1661-21.2022. Epub 2022 Nov 16.
6
Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits.
Neuron. 2016 Feb 3;89(3):521-35. doi: 10.1016/j.neuron.2015.11.020.
7
Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory.
Neuron. 2016 Nov 23;92(4):902-915. doi: 10.1016/j.neuron.2016.09.023. Epub 2016 Oct 13.
9
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.
J Neurosci. 2015 Nov 25;35(47):15555-67. doi: 10.1523/JNEUROSCI.1467-13.2015.
10
Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells.
Cereb Cortex. 2013 Dec;23(12):2790-802. doi: 10.1093/cercor/bhs210. Epub 2012 Aug 31.

引用本文的文献

2
Long-lasting, subtype-specific regulation of somatostatin interneurons during sensory learning.
Sci Adv. 2025 Aug 15;11(33):eadt8956. doi: 10.1126/sciadv.adt8956.
3
Dual-feature selectivity enables bidirectional coding in visual cortical neurons.
bioRxiv. 2025 Jul 21:2025.07.16.665209. doi: 10.1101/2025.07.16.665209.
4
A multimodal approach for visualization and identification of electrophysiological cell types .
bioRxiv. 2025 Jul 31:2025.07.24.666654. doi: 10.1101/2025.07.24.666654.
8
Reciprocal interaction between cortical SST and PV interneurons in top-down regulation of retinothalamic refinement.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2504224122. doi: 10.1073/pnas.2504224122. Epub 2025 Jun 18.

本文引用的文献

1
A transcriptomic axis predicts state modulation of cortical interneurons.
Nature. 2022 Jul;607(7918):330-338. doi: 10.1038/s41586-022-04915-7. Epub 2022 Jul 6.
2
A versatile viral toolkit for functional discovery in the nervous system.
Cell Rep Methods. 2022 May 26;2(6):100225. doi: 10.1016/j.crmeth.2022.100225. eCollection 2022 Jun 20.
3
Local connectivity and synaptic dynamics in mouse and human neocortex.
Science. 2022 Mar 11;375(6585):eabj5861. doi: 10.1126/science.abj5861.
4
BRAIN 2.0: Transforming neuroscience.
Cell. 2022 Jan 6;185(1):4-8. doi: 10.1016/j.cell.2021.11.037.
5
Dense functional and molecular readout of a circuit hub in sensory cortex.
Science. 2022 Jan 7;375(6576):eabl5981. doi: 10.1126/science.abl5981.
6
The organization and development of cortical interneuron presynaptic circuits are area specific.
Cell Rep. 2021 Nov 9;37(6):109993. doi: 10.1016/j.celrep.2021.109993.
7
A multimodal cell census and atlas of the mammalian primary motor cortex.
Nature. 2021 Oct;598(7879):86-102. doi: 10.1038/s41586-021-03950-0. Epub 2021 Oct 6.
8
Human neocortical expansion involves glutamatergic neuron diversification.
Nature. 2021 Oct;598(7879):151-158. doi: 10.1038/s41586-021-03813-8. Epub 2021 Oct 6.
9
Genetic and epigenetic coordination of cortical interneuron development.
Nature. 2021 Sep;597(7878):693-697. doi: 10.1038/s41586-021-03933-1. Epub 2021 Sep 22.
10
A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
Cell. 2021 Jun 10;184(12):3222-3241.e26. doi: 10.1016/j.cell.2021.04.021. Epub 2021 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验