Suppr超能文献

用于研究小鼠眼部血管生理学的离体眼部灌注模型。

Ex vivo ocular perfusion model to study vascular physiology in the mouse eye.

机构信息

Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557-0318, USA.

Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557-0318, USA.

出版信息

Exp Eye Res. 2023 Aug;233:109543. doi: 10.1016/j.exer.2023.109543. Epub 2023 Jun 28.

Abstract

Several hypotheses have been tested to understand whole organ regulation in other organs such as the brain and kidney, but no such hypothesis has yet been proposed for ocular circulations. To some extent resolve this deficit our ex vivo mouse eye perfusion model takes the first step in elucidating the mechanisms controlling the individual components of the ocular circulation. Various isolated ocular vascular preparations have been utilized in studies of ocular vascular biology, physiology, and pharmacology, including studies on both normal and pathological conditions. However, there is still significant potential for further studies to improve our understanding of ocular circulation and its regulation. The choroid specifically is inaccessible to direct visualization due to the retina's high metabolic requirement with a transparency that cannot be compromised by an overly rich vascular network on the inner retinal side hindering the visualization of the choroid. In this technical paper, we provide a detailed description of all the steps to be followed from the enucleation of mouse eyes to cannulation of the ophthalmic artery and perfusion and ex vivo confocal microscopy imaging of the dynamic nature of the choroid circulation.

摘要

已经提出了一些假设来理解大脑和肾脏等其他器官的整体器官调节,但对于眼部循环还没有提出这样的假设。为了在一定程度上解决这一不足,我们的离体小鼠眼灌注模型在阐明控制眼部循环各个组成部分的机制方面迈出了第一步。各种离体眼部血管制剂已被用于眼部血管生物学、生理学和药理学的研究,包括正常和病理条件下的研究。然而,仍然有很大的潜力进行进一步的研究,以提高我们对眼部循环及其调节的理解。脉络膜特别难以直接可视化,因为视网膜的高代谢需求和透明度使得脉络膜的血管网络过于丰富而无法妥协,这会阻碍脉络膜的可视化。在本技术论文中,我们详细描述了从眼球取出到眼球动脉插管、灌注和离体共聚焦显微镜成像的所有步骤,以观察脉络膜循环的动态性质。

相似文献

1
Ex vivo ocular perfusion model to study vascular physiology in the mouse eye.
Exp Eye Res. 2023 Aug;233:109543. doi: 10.1016/j.exer.2023.109543. Epub 2023 Jun 28.
2
Isolated preparations of ocular vasculature and their applications in ophthalmic research.
Prog Retin Eye Res. 2003 Mar;22(2):135-69. doi: 10.1016/s1350-9462(02)00044-7.
3
A technical protocol for an experimental ex vivo model using arterially perfused porcine eyes.
Exp Eye Res. 2019 Apr;181:171-177. doi: 10.1016/j.exer.2019.02.003. Epub 2019 Feb 5.
6
Optical imaging of the chorioretinal vasculature in the living human eye.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14354-9. doi: 10.1073/pnas.1307315110. Epub 2013 Aug 5.
8
Inter-Relationship of Arterial Supply to Human Retina, Choroid, and Optic Nerve Head Using Micro Perfusion and Labeling.
Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3565-3574. doi: 10.1167/iovs.17-22191.
10
Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery.
Eur J Pharm Sci. 2012 Aug 15;46(5):475-83. doi: 10.1016/j.ejps.2012.03.013. Epub 2012 Mar 30.

引用本文的文献

1
Cryopreservation of human lung tissue for 3D ex vivo analysis.
Respir Res. 2025 May 15;26(1):187. doi: 10.1186/s12931-025-03265-y.
2
Retinal cytoarchitecture is preserved in an organotypic perfused human and porcine eye model.
Acta Neuropathol Commun. 2024 Nov 30;12(1):186. doi: 10.1186/s40478-024-01892-y.
3
Light-sensitive Ca signaling in the mammalian choroid.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2418429121. doi: 10.1073/pnas.2418429121. Epub 2024 Nov 8.

本文引用的文献

1
Intraluminal pressure elevates intracellular calcium and contracts CNS pericytes: Role of voltage-dependent calcium channels.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216421120. doi: 10.1073/pnas.2216421120. Epub 2023 Feb 21.
2
Vascular mechanotransduction.
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.
4
Revival of light signalling in the postmortem mouse and human retina.
Nature. 2022 Jun;606(7913):351-357. doi: 10.1038/s41586-022-04709-x. Epub 2022 May 11.
5
Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System.
Annu Rev Physiol. 2022 Feb 10;84:331-354. doi: 10.1146/annurev-physiol-061121-040127. Epub 2021 Oct 21.
6
Recent progress in optical clearing of eye tissues.
Exp Eye Res. 2021 Nov;212:108796. doi: 10.1016/j.exer.2021.108796. Epub 2021 Oct 15.
7
Choriocapillaris: Fundamentals and advancements.
Prog Retin Eye Res. 2022 Mar;87:100997. doi: 10.1016/j.preteyeres.2021.100997. Epub 2021 Jul 19.
8
Retina Metabolism and Metabolism in the Pigmented Epithelium: A Busy Intersection.
Annu Rev Vis Sci. 2021 Sep 15;7:665-692. doi: 10.1146/annurev-vision-100419-115156. Epub 2021 Jun 8.
9
PIP corrects cerebral blood flow deficits in small vessel disease by rescuing capillary Kir2.1 activity.
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2025998118.
10
Brain endothelial cell TRPA1 channels initiate neurovascular coupling.
Elife. 2021 Feb 26;10:e63040. doi: 10.7554/eLife.63040.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验