Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
School of Life Science and Technology, Tongji University, Shanghai, China.
Nat Protoc. 2023 Aug;18(8):2404-2414. doi: 10.1038/s41596-023-00841-8. Epub 2023 Jun 30.
RNA-sequencing (RNA-seq) has become an increasingly cost-effective technique for molecular profiling and immune characterization of tumors. In the past decade, many computational tools have been developed to characterize tumor immunity from gene expression data. However, the analysis of large-scale RNA-seq data requires bioinformatics proficiency, large computational resources and cancer genomics and immunology knowledge. In this tutorial, we provide an overview of computational analysis of bulk RNA-seq data for immune characterization of tumors and introduce commonly used computational tools with relevance to cancer immunology and immunotherapy. These tools have diverse functions such as evaluation of expression signatures, estimation of immune infiltration, inference of the immune repertoire, prediction of immunotherapy response, neoantigen detection and microbiome quantification. We describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating many of these tools to streamline RNA-seq analysis. We also developed a comprehensive and user-friendly guide in the form of a GitBook with text and video demos to assist users in analyzing bulk RNA-seq data for immune characterization at both individual sample and cohort levels by using RIMA.
RNA 测序(RNA-seq)已成为一种越来越经济有效的技术,可用于对肿瘤进行分子分析和免疫特征分析。在过去的十年中,已经开发了许多计算工具,可用于从基因表达数据中描述肿瘤免疫。然而,对大规模 RNA-seq 数据的分析需要生物信息学专业知识、大量的计算资源以及癌症基因组学和免疫学知识。在本教程中,我们概述了用于肿瘤免疫特征分析的批量 RNA-seq 数据的计算分析,并介绍了与癌症免疫学和免疫疗法相关的常用计算工具。这些工具具有多种功能,例如评估表达特征、估计免疫浸润、推断免疫受体库、预测免疫治疗反应、新抗原检测和微生物组定量。我们描述了集成了许多此类工具的 RNA-seq 免疫分析(RIMA)管道,以简化 RNA-seq 分析。我们还以 GitBook 的形式开发了一个全面且用户友好的指南,其中包含文本和视频演示,以帮助用户使用 RIMA 在个体样本和队列水平上分析批量 RNA-seq 数据以进行免疫特征分析。