Suppr超能文献

人工智能辅助肺部超声在资源有限的重症监护病房中的临床获益。

Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit.

机构信息

Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.

School of Biomedical Engineering Imaging Sciences, King's College London, London, UK.

出版信息

Crit Care. 2023 Jul 1;27(1):257. doi: 10.1186/s13054-023-04548-w.

Abstract

BACKGROUND

Interpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we developed an AI solution that assists LUS practitioners and assessed its usefulness in  a low resource ICU.

METHODS

This was a three-phase prospective study. In the first phase, the performance of four different clinical user groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool.

RESULTS

The average accuracy of beginners' LUS interpretation was 68.7% [95% CI 66.8-70.7%] compared to 72.2% [95% CI 70.0-75.6%] in intermediate, and 73.4% [95% CI 62.2-87.8%] in advanced users. Experts had an average accuracy of 95.0% [95% CI 88.2-100.0%], which was significantly better than beginners, intermediate and advanced users (p < 0.001). When supported by our AI tool for interpreting retrospectively acquired clips, the non-expert clinicians improved their performance from an average of 68.9% [95% CI 65.6-73.9%] to 82.9% [95% CI 79.1-86.7%], (p < 0.001). In prospective real-time testing, non-expert clinicians improved their baseline performance from 68.1% [95% CI 57.9-78.2%] to 93.4% [95% CI 89.0-97.8%], (p < 0.001) when using our AI tool. The time-to-interpret clips improved from a median of 12.1 s (IQR 8.5-20.6) to 5.0 s (IQR 3.5-8.8), (p < 0.001) and clinicians' median confidence level improved from 3 out of 4 to 4 out of 4 when using our AI tool.

CONCLUSIONS

AI-assisted LUS can help non-expert clinicians in an LMIC ICU improve their performance in interpreting LUS features more accurately, more quickly and more confidently.

摘要

背景

在重症监护病房(ICU)中解读即时护理肺部超声(LUS)图像可能具有挑战性,尤其是在培训资源有限的中低收入国家(LMICs)。尽管最近在使用人工智能(AI)自动化许多超声成像分析任务方面取得了进展,但尚未证明任何 AI 驱动的 LUS 解决方案在 ICU 中具有临床实用性,特别是在 LMICs 中。因此,我们开发了一种 AI 解决方案来辅助 LUS 从业者,并评估其在资源有限的 ICU 中的有用性。

方法

这是一项三阶段前瞻性研究。在第一阶段,评估了四个不同临床用户组在解读 LUS 剪辑方面的表现。在第二阶段,评估了 57 名非专家临床医生在使用和不使用专门用于 LUS 解释的 AI 工具的情况下,对回顾性离线剪辑的表现。在第三阶段,我们在 ICU 中进行了一项前瞻性研究,14 名临床医生在有和没有我们的 AI 工具的情况下对 7 名患者进行 LUS 检查,我们采访了临床医生,了解他们对 AI 工具的使用情况。

结果

初学者的 LUS 解读平均准确率为 68.7%[95%CI 66.8-70.7%],中级为 72.2%[95%CI 70.0-75.6%],高级为 73.4%[95%CI 62.2-87.8%]。专家的平均准确率为 95.0%[95%CI 88.2-100.0%],明显优于初学者、中级和高级用户(p<0.001)。当使用我们的 AI 工具来解释回顾性获取的剪辑时,非专家临床医生的表现从平均 68.9%[95%CI 65.6-73.9%]提高到 82.9%[95%CI 79.1-86.7%],(p<0.001)。在实时前瞻性测试中,非专家临床医生的表现从基线的 68.1%[95%CI 57.9-78.2%]提高到 93.4%[95%CI 89.0-97.8%],(p<0.001),当使用我们的 AI 工具时,他们的解读时间从中位数 12.1 秒(IQR 8.5-20.6)缩短到 5.0 秒(IQR 3.5-8.8),(p<0.001),并且临床医生的中位数置信水平从 4 分中的 3 分提高到 4 分。

结论

在 LMIC ICU 中,AI 辅助的 LUS 可以帮助非专家临床医生更准确、更快速、更自信地解读 LUS 特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6a/10314555/6fdcf2c8090c/13054_2023_4548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验