Suppr超能文献

整合不同实验中的基因表达和 DNA 甲基化数据。

Integration of gene expression and DNA methylation data across different experiments.

机构信息

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Nucleic Acids Res. 2023 Aug 25;51(15):7762-7776. doi: 10.1093/nar/gkad566.

Abstract

Integrative analysis of multi-omic datasets has proven to be extremely valuable in cancer research and precision medicine. However, obtaining multimodal data from the same samples is often difficult. Integrating multiple datasets of different omics remains a challenge, with only a few available algorithms developed to solve it. Here, we present INTEND (IntegratioN of Transcriptomic and EpigeNomic Data), a novel algorithm for integrating gene expression and DNA methylation datasets covering disjoint sets of samples. To enable integration, INTEND learns a predictive model between the two omics by training on multi-omic data measured on the same set of samples. In comprehensive testing on 11 TCGA (The Cancer Genome Atlas) cancer datasets spanning 4329 patients, INTEND achieves significantly superior results compared with four state-of-the-art integration algorithms. We also demonstrate INTEND's ability to uncover connections between DNA methylation and the regulation of gene expression in the joint analysis of two lung adenocarcinoma single-omic datasets from different sources. INTEND's data-driven approach makes it a valuable multi-omic data integration tool. The code for INTEND is available at https://github.com/Shamir-Lab/INTEND.

摘要

多组学数据集的综合分析已被证明在癌症研究和精准医学中具有极其重要的价值。然而,从相同的样本中获得多模态数据通常是困难的。整合来自不同组学的多个数据集仍然是一个挑战,目前仅有少数可用的算法可用于解决该问题。在这里,我们提出了 INTEND(转录组和表观基因组数据的整合),这是一种用于整合覆盖不相交样本集的基因表达和 DNA 甲基化数据集的新算法。为了实现整合,INTEND 通过在同一组样本上测量的多组学数据上进行训练,学习两种组学之间的预测模型。在对涵盖 4329 名患者的 11 个 TCGA(癌症基因组图谱)癌症数据集的综合测试中,INTEND 与四种最先进的整合算法相比,取得了显著更好的结果。我们还展示了 INTEND 在联合分析来自不同来源的两个肺腺癌单组学数据集中,揭示 DNA 甲基化与基因表达调控之间联系的能力。INTEND 的数据驱动方法使其成为一种有价值的多组学数据整合工具。INTEND 的代码可在 https://github.com/Shamir-Lab/INTEND 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c59/10450176/9656261e1be1/gkad566figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验