Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.
Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.
PLoS Biol. 2022 Jul 7;20(7):e3001689. doi: 10.1371/journal.pbio.3001689. eCollection 2022 Jul.
In the face of severe environmental crises that threaten insect biodiversity, new technologies are imperative to monitor both the identity and ecology of insect species. Traditionally, insect surveys rely on manual collection of traps, which provide abundance data but mask the large intra- and interday variations in insect activity, an important facet of their ecology. Although laboratory studies have shown that circadian processes are central to insects' biological functions, from feeding to reproduction, we lack the high-frequency monitoring tools to study insect circadian biology in the field. To address these issues, we developed the Sticky Pi, a novel, autonomous, open-source, insect trap that acquires images of sticky cards every 20 minutes. Using custom deep learning algorithms, we automatically and accurately scored where, when, and which insects were captured. First, we validated our device in controlled laboratory conditions with a classic chronobiological model organism, Drosophila melanogaster. Then, we deployed an array of Sticky Pis to the field to characterise the daily activity of an agricultural pest, Drosophila suzukii, and its parasitoid wasps. Finally, we demonstrate the wide scope of our smart trap by describing the sympatric arrangement of insect temporal niches in a community, without targeting particular taxa a priori. Together, the automatic identification and high sampling rate of our tool provide biologists with unique data that impacts research far beyond chronobiology, with applications to biodiversity monitoring and pest control as well as fundamental implications for phenology, behavioural ecology, and ecophysiology. We released the Sticky Pi project as an open community resource on https://doc.sticky-pi.com.
面对严重威胁昆虫生物多样性的环境危机,我们迫切需要新技术来监测昆虫物种的身份和生态。传统上,昆虫调查依赖于手动收集陷阱,这提供了丰富的数据,但掩盖了昆虫活动的大的日内和日间变化,这是它们生态学的一个重要方面。尽管实验室研究表明,昼夜节律过程对昆虫的生物功能至关重要,从进食到繁殖,但我们缺乏高频监测工具来研究昆虫的昼夜生物学。为了解决这些问题,我们开发了粘性 Pi,这是一种新型的、自主的、开源的昆虫陷阱,它每 20 分钟获取一次粘性卡片的图像。使用定制的深度学习算法,我们自动且准确地对昆虫的捕获位置、时间和种类进行评分。首先,我们使用经典的生物钟模型生物黑腹果蝇在受控的实验室条件下验证了我们的设备。然后,我们在野外部署了一系列粘性 Pi 来描述农业害虫果蝇 suzukii 及其寄生性黄蜂的日常活动。最后,我们通过描述一个群落中昆虫时间生态位的共存,展示了我们智能陷阱的广泛应用范围,而无需预先针对特定的分类群。总之,我们的工具的自动识别和高采样率为生物学家提供了独特的数据,这些数据不仅影响了生物钟领域的研究,还应用于生物多样性监测和害虫控制,以及对物候学、行为生态学和生理生态学具有重要意义。我们将粘性 Pi 项目作为一个开放社区资源发布在 https://doc.sticky-pi.com。